
Simple Objects

Sascha Demetrio

July 23, 2005

Abstract

This documents defines the properties of so called simple objects and how these objects are
serialized. A simple object is completely self contained with respect to data. The semantics of simple
object methods are up to the application handling simple objects.

Technically, a simple object is a container for simple structured data consisting of numeric values,
arrays (may be associative), UNICODE strings, opaque binary objects, external variable references and
programmatic expressions. There are two serialization forms defined for simple objects: a human
readable and self documenting text serialization and a compact binary serialization.

Simple objects may be used for data storage and exchange between applications. A typical
application would be a remote procedure call / method invocation (RPC/RMI) protocol based on a
simple object serialization.

Simple objects may come handy where object representationsbased on XML are too much. An
application may use both, simple objects and objects represented as instanced of XML schemas.

A reference implementation of a programming library offering access to simple object serializations
can be found on

http://www.wizard-labs.org/sobject/

The reference implementation is available under a BSD stylelicense an may be used free of charge
for commercial and non-commercial applications. For details, see theLICENSE file included in the
distribution.

1

Contents

1 Overview 5

2 Structure 6

2.1 Object Types 6

2.2 Object Classes 7

2.3 Extended Strings 7

2.4 Expression Objects 7

2.5 Comparing Simple Objects 8

3 Text Serialization 10

3.1 Text Serialization Syntax 10

3.1.1 Serialization Contexts 10

3.1.2 Comments .10

3.1.3 Keywords .. 11

3.1.4 Thegeneral Context . 11

3.1.5 Theselection Context . 12

3.1.6 Thearray Context . 12

3.1.7 Theexpression Context . 12

3.1.8 Thestring Context . 14

3.1.9 Binary Objects 14

3.1.10 Variable References 15

3.1.11 Quoted Strings 16

3.2 ASCII Serialization 18

4 Binary Serialization 19

4.1 The Type Byte 19

4.2 The Class Name 20

4.3 The Data Bytes 20

4.3.1 The Typesnil andbool . 20

4.3.2 The Typeint . 20

4.3.3 The Typefloat . 20

4.3.4 The Typestring . 20

4.3.5 The Typebinary . 21

4.3.6 The Typearray . 21

4.3.7 The Typeexpr . 21

4.3.8 The Typevref . 22

5 Addresses 23

5.1 Address Resolution 23

5.1.1 Address Resolution Operations 23

5.1.2 The Resolution Process 25

2

5.1.3 The Resolution Function 25

5.2 Pure Addresses 26

5.3 Considerations and Examples 26

5.4 UNICODE Normalization 27

5.4.1 Surrogate Pairs 27

5.4.2 Normalization 27

A Serialization Examples 28

A.1 Text Serialization Examples 28

A.2 Binary Serialization Examples 28

B Expression Semantics 29

B.1 Arithmetic Semantics 29

B.1.1 EXPR_POS (Unary positive operator) . 29

B.1.2 EXPR_NEG (Unary negation operator) . 29

B.1.3 EXPR_NOT (Unary logical negation operator) . 29

B.1.4 EXPR_PLUS (Binary plus operator) . 29

B.1.5 EXPR_MINUS (Binary minus operator) . 30

B.1.6 EXPR_MUL (Multiplication operator) . 31

B.1.7 EXPR_DIV (Division operator) . 31

B.1.8 EXPR_MOD (Modulo operator) . 32

B.1.9 EXPR_CAT (Concatenation operator) . 32

B.1.10 EXPR_LS (Less-than comparison operator) . 32

B.1.11 EXPR_LE (Less-or-equal comparison operator) 32

B.1.12 EXPR_GT (Greater-than comparison operator)33

B.1.13 EXPR_GE (Greater-or-equal comparison operator) 33

B.1.14 EXPR_EQ (Equals comparison operator) . 33

B.1.15 EXPR_EQ_APPROX (Equals approximate comparison operator) 33

B.1.16 EXPR_NE (Not-equal comparison operator) . 33

B.1.17 EXPR_NE_APPROX (Not-equal approximate comparison operator) 33

B.1.18 EXPR_AND (Logical AND operator) . 33

B.1.19 EXPR_OR (Logical OR operator) . 33

B.1.20 Comparable Objects 33

B.1.21 Approximate Comparisons 34

B.2 Programmatic Semantics 34

C Standard Object Classes 36

C.1 The Standard Default Class 36

C.2 Thetime Class Environment . 36

C.2.1 The ISO 8601 Time and Data Format 37

C.2.2 The Epoch Representation 37

C.2.3 Methods of thetime Class . 37

3

C.2.4 Time Expression Evaluation 39

D Simple Objects API 41

D.1 The Environment Class 41

D.2 The Class Environment Class 43

D.2.1 The Default Class Environment 45

D.3 Runtime Objects 45

D.3.1 Factories .. . 45

D.3.2 Object Modification 49

D.3.3 Subobject Access 55

D.3.4 Object Evaluation 58

D.3.5 Serialization and Deserialization 62

D.3.6 The Default Environment 64

D.4 The Standard Environment 64

D.5 Message Identifiers 65

4

1 Overview

Simple objects are objects with a defined serialization thatmay be accessed from different runtime
environments. The following requirements were consideredin the design:

• The most common basic data types shall be supported. That is aNIL object, booleans, integers,
floats, strings, lists/arrays/dictionaries.

• The string type shall support UNICODE characters.

• It shall be possible to store opaque binary data.

• It shall provide a method-call data type suitable for remotemethod invocation (RMI).

• An efficient binary serialization shall be defined.

• A human readable text serialization shall be defined.

• A standard representation of addresses in simple objects shall be defined.

To keep the design simple, the following limitations are accepted:

• There is no support for a reference or pointer type.

• The serializations are not optimized for fast random access.

This specifcation consits of acorepart and anappendix. The core part contains everything that is required
for serialization and deserialization of simple objects. The specifcation ofaddressesis also part of the
core specifcation. An address is an expression selecting a subobject of a simple object (e.g. an object
contained in an array or part of an expression). The following sections will cover the details of the simple
object structure, serializations, and addresses. Section2 covers the structure of simple objects, sections
3.1 and 4 define the text and binary serializations, section 5covers addresses.

Semantics of classes or expressions isnotpart of the core specifcation. Specific application programming
interfaces (APIs) are alsonotcovered by this specifcation. However, some semantics are very
commonplace (like arithmetic operation semantics on numeric types), as well as some object classes and
APIs. Theappendixcovers some of these aspects. Appendix A lists some examplesof text and binary
serializations of simple objects, appendix B defines standard expression semantics, appendix C defines
some common object classes along with representation and semantics, appendix D defines a language
independed simple object API which should inspire actual simple objects programming libraries.

5

2 Structure

A simple object is a (type, class, data) triple. Thetypeis one of the following:nil, bool, int, float,
string, binary, array (representing a simple array or an associative array), andexpr (representing
a programmatic expression). The object’s class is either null (not present) or a UNICODE string
identifying the object’s class. The semeantics of the object class is up to the application, however some
object classes are defined in the appendix (which is not part of the core specification). Thedatafield
depends on the object type.

2.1 Object Types

Thetypefield of a simple object tuple has one of the following values:

nil
This type is reserved for theNIL object. TheNIL object typically represents an unspecified or
undefined value. Nodatafield is associated with this type.

bool
An object of this type holds the truth valuesTRUE or FALSE in its data field.

int
An object of this type represents an integer value. Thedatafield holds a 64 bit signed integer in the
range−263

. . .(263−1).

float
An object of this type represents a floating point value. Thedatafield holds a 64 bit IEEE floating
point number. This is typically equivalent to the ISO C typedouble.

string
An object of type string represents a sequence of UNICODE characters and escape sequences. The
datafield holds a null-terminated sequence of bytes encoding theUNICODE characters and escape
sequences using the UTF-8 scheme. UNICODE strings with escape sequences are called extended
strings and are covered in section 2.3.

binary
An object of this type represents an opaque byte array, associated with a simple object describing its
type. Thedatafield is a tuple (id, body), whereid is an arbitrary simple object andbodyis a byte
array.

array
An object of typearray is a (possibly empty) sequence of tuples of arbitrary simpleobjects. The
datafield as a list of simple object tuples (key, value). For a typical array (or list), thekeyfield of all
tuples holds the objectNIL . For an associative array (or dictionary), thekeyfield holds the
associated key. Note that the key is not necessarily unique.If multiple values share the same key,
the last value with that specific key is the value bound to the key.

expr
Objects of typeexpr (short for “expression”) represent a programmatic expression. An expression
combines one or more objects with an operator. Section 2.4 covers expressions in detail.

vref
Objects of typevref represent a variable reference. Thedatafield of a variable reference holds an
extended UNICODE string (see 2.3. The semantics of a variable reference are defined by the
application).

6

2.2 Object Classes

Theclassfield of a simple object is optional. We’ll say the class field is null if it is omitted. If present, the
class field is a simple UNICODE string (i.e.notan extended UNICODE string as defined in section 2.3 –
class names maynotcontain variable references).

A programming library may support callback hooks for serialization and deserialization of objects
belonging to a specific class. For example, time informationmay be stored in ISO notation and translated
to an epoch representation when deserialized.

A set of standard object classes (and semantics) is defined inappendix C.

2.3 Extended Strings

An extended stringis a sequence of UNICODE characters and escape sequences. Anescape sequence
either represents the characterESC itself or a variable reference. An escape sequence is introduced by the
ASCII characterESC (code point0x1b).

The simple case is a self quoting escape sequence. This is thecharacterESC followed by anotherESC
character. This sequence represents a singleESC character.

A variable referencing escape sequence is anESC followed by anSTX and a reference string. The
reference string is terminated by the sequenceESC–ETX (ASCII STX has the code point0x2, ASCII
ETX has the code point0x3) or by the end of the string. The reference string itself may contain escape
sequences, so the terminatingESC–ETX must match the initialESC–STX.

An unrecognizedESC sequence or anESC–ETX sequence outside of an escape sequence is an error and
the semantics are undefined.

The semantics of variable references are completely up to the application. A programming library
implementing access to simple objects would typically handle variable references in extended strings
transparently through a callback mechanism or virtual method.

2.4 Expression Objects

An expression object represents a programmatic expressioncontaining simple objects (operands) linked
with operators. We’ll call operators combining two or more expressions infix operators, since these
operators are typically written infix (between the operands) when the expression is written down.

The following operators are defined for simple object expressions:

Plus, minus, times, divide, modulo, concat.
The plus/minus/times/divide/modulo/concat operator represents an abstract
addition/subtraction/multiplication/division/modulo/concatenation of two simple object
expressions.

Approximate less-than, less-or-equal, greater-than, greater-or-equal.
These operators represent a symbolic approximate ordered comparison of two simple object
expressions using a specified fuzz value. This is a three operand expression where the first two
operands are objects being compared and the third operand isthe fuzz value.

Less-than, less-or-equal, greater-than, greater-or-equal.
These operators represent a symbolic ordered comparison oftwo simple object expressions.

Approximate equal, not-equal.
These operators represent a symbolic application comparison for equality of two simple object
expressions using a specified fuzz value. This is a three operand expression where the first two
operands are objects being compared and the third operand isthe fuzz value.

7

Equal, not-equal.
These operators represent a symbolic comparison for equality of two simple object expressions.

And, or.
These operators represent a symbolic logical AND/OR combination of two simple object
expressions.

Not, negate, positive.
This operator represents a symbolic logical/numerical negation/numerical positive of a simple
object expression.

Conditional.
This operator represents a conditional combination of three simple object expressions. The first
operand represents the condition selecting either the second or the third operand.

Sequential combination.
The sequential combination operator combines two simple object expressions to a symbolic
sequence.

Selection.
The selection operator combines two simple object expressions to a symbolic selection expression.
The first operand represents the object being selected from and the second operand represents the
selector.

Index, call.
An index/call operation combines two expressions to a symbolic index/method call expression. The
first operand represents the object being indicated/calledand the second operand represents the
index/argument list. The second operand of an index/call operator is always an array object.

The semantics of expressions are defined by the application,the simple objects only take care of storing
the expression. A programming library implementing accessto simple object serializations may or may
not offer support in evaluating expression objects.

Appendix B suggests expression semantics for all operatorsexcept for the call operator. A programming
library for simple objects should support for evaluating expressions conforming to these semantics.

2.5 Comparing Simple Objects

Simple objects may be compared for equality. The core specification does not define the semantics of an
ordered comparison on simple objects, ordered comparisonsare covered in appendix B (Expression
Semantics). The equality of two simple objects may depend onthe application context (see below).

Simple objects of different type (typefield) or class (classfield) are never equal wrt. this definition. If
both thetypeandclassof two simple objects match, these objects are compared according to the
following rules:

nil
Two objects of typenil are considered equal.

bool, integer, float
Two objects of typebool, integer, orfloat are considered equal, if their numeric values are
equal. For values of typefloat this meanexactidentity. Note that an integer value is alwaysnot
equalto the corresponding (numerically equal) floating point number.

string
Two strings are considered equal, if the UTF-8 encoding of the resolved strings (i.e. after
preforming a substitution of all variable references in thestrings) are byte-per-byte equal.

8

Implementation Note:If an application wants to compare two strings as-is, it may create an
environment where variable references are not substituted. A programming library may provide a
“raw” variant of object comparison as a convenience feature.

binary
Two binary objects are considered equal if the type ID objects are equal and the data parts are
byte-per-byte equal.

array
Two arrays are considered equal if they contain the same number of (key, value) pairs the
correspondingkeyandvalueobjects (at the respective same index) compare equal.

Note: If arrays are used as dictionaries, the order of the keys is significant. If an application wants
to perform a true dictionary comparison, it should normalize (i.e. sort) the arrays in an appropriate
way.

expr
Two expressions are considered equal if they use the same operator, the same number of operands,
and if the respective operands of both expressions compare equal.

9

3 Text Serialization

The text serialization is intended for human readable object storage and for objects specified by a user of
an application (e.g. in a configuration file). The text serialization syntax can be used for user specified
values in a configuration file or even for the entire configuration file.

The text serialization used for storage utilizes a subset ofthe available syntax and uses ASCII characters
only. In this section we’ll first describe the full syntax of simple object text serializations. The ASCII only
serializations are covered in section 3.2.

3.1 Text Serialization Syntax

A text serialization of a simple object is a sequence of byte encoded characters. For objects nested within
a simple object, the serialization of the nested object is contained within the serialization of the entire
object as a substring. The syntax of the simple object text serialization mimics the typical programming
language syntax of constant expressions.

3.1.1 Serialization Contexts

A text serialization is always interpreted relative to a context type (called the serialization context, or
context for short). An entire object is typically interpreted relative to thegeneral context or
expression context, but may also be interpreted relative to another context. When a text serialization
is read, the application specifies a serialization context.A serialization context is one of the following:

general
The general context is the typical top-level context for text serializations.

selection
Theselection context is used when the specified object acts as a key in an associative array or
selector in a selection expression. Every valid serialization in thegeneral context is also valid in
theselection context. The only difference is that keywords are interpreted as strings in the
selection context.

array
In the array context, the text serialization is interpretedas a list of simple objects (values) or tuples
of simple objects (key/value pairs). Values and key/value pairs may be mixed.

expression
In theexpression context, the text serialization is interpreted as a hierarchy of objects connected
with operators.

string
In thestring context, the text serialization is interpreted as a string.

3.1.2 Comments

A text serialization of a simple object may contain textual comments. Comments may appear in all places
where insignificant whitespace may be used. Note that comments may not be used when a serialization is
parsed in thestring context.

Two forms of comments are supported: script-style commentsand C style comments. Script style
comments are introduced by a hash character “#” and are terminated by the next line separator (either
ASCII CR or ASCII LF) or by the end of the serialization. C style comments are introduced by the
character sequence “/*” and must be terminated by the character sequence “*/”. C style comments may
not be nested.

10

3.1.3 Keywords

Some objects (NIL , booleans and out-of-range floating point numbers) are represented by keywords. In a
simple object text serialization, the following keywords are recognized:nil, true, false, nan, inf,
-inf. Keywords are matched case insensitive, e.g.true, TRUE, TrUe are all valid notations for the
keywordtrue.

3.1.4 Thegeneral Context

Thegeneral context is the default context for the text encoding. Leading and trailing whitespace is
ignored (skipped).

A serialization ingeneral context may start with an (optional) class specifier. A classspecifier is a class
name enclosed in curly braces. The name enclosed in braces specifies theclassfield of the simple object.
The class name may be encoded as a UTF-8 string and may containcharacter escape sequences
introduced by a backslash as described in the section “Quoted Strings” (3.1.11, page 16). Whitespace
following the class specifier is ignored (skipped).

In addition to the class specifier, the following lexical structures are recognized:

• The keywordnil represents theNIL object.

• The keywordtrue represents an object of typebool with the truth valueTRUE.

• The keywordfalse represents an object of typebool with the truth valueFALSE.

• The keywordsnan, inf, -inf. These keywords represent the IEEE floating point values NAN
(not a number), INF (infinity), and -INF (negative infinity).On platforms not supporting a quiet
NaN1, infinity is used instead of NaN. On systems not supporting a signed infinity, an unsigned
infinity is used for both positive and negative infinity.

• Integer values in C notation (without suffixes). These values represent objects of type int (64 bit
integer). The value associated with notations describing avalue that is out of bounds is undefined.

• Floating point values in C notation (including ISO C hex floats). These values represent objects of
type float (64 bit floating point, equivalent to a Cdouble in most C implementations).

• Binary objects. A binary object is enclosed in a pair of single ASCII percent signs “%” or double
ASCII percent signs “%%”. Text serializations of binary objects are covered in section 3.1.9.

• Unquoted strings. An unquoted string is a sequence of ASCII alphanumerics, underscores, and
hyphens. An unquoted string may not start with a digit and must contain at least one character that
is not a hyphen. If an unquoted string starts with a hyphen, its second character may not be a digit.

• Quoted strings. A quoted string is a sequence of characters enclosed in quoting characters (single
quotes or double quotes). Quoted strings are covered in section 3.1.11.

• Arrays. An array serialization is enclosed in a matching pair of brackets (ASCII[and ASCII]). The
character sequence enclosed is interpreted relative to thearray context.

• Expressions. An expression serialization is enclosed in parentheses (ASCII(and ASCII)). The
character sequence enclosed is interpreted relative to theexpression context.

• Variable references. A variable reference is introduced byan ASCII dollar sign. Variable references
are covered in section 3.1.10.

1A quiet NaN is a not-a-numner value that does not rise a floating point exception.

11

3.1.5 Theselection Context

Theselection context can be considered a variant of thegeneral context. Every object serialization
that is valid in thegeneral context is also valid in theselection context, and vice versa. However,
in theselection context, all keywords are recognized as strings. When a keyword is recognized as a
string, its caseis significant.

To encode a keyword represented object in selection context, the object can be written as an expression
(see section 3.1.7). This is done by putting the keyword in parentheses.

3.1.6 Thearray Context

In thearray context, the serialized object is interpreted as an array orassociative array of simple objects,
that is, a sequence of values (simple objects interpreted ingeneral context) and key/value pairs.

A key/value pair is represented by two simple object serializations separated by an ASCII equal sign “=”
or ASCII colon “:”. The first object represents the key and is interpreted inselection context, the
second object represents the value and is interpreted ingeneral context.

The values and key/value pairs in the array are separated by whitespace and/or commas. More precisely,
in array context, commas are treated as whitespace.

3.1.7 Theexpression Context

Theexpression context is used to interpret a serialization of a simple object expression. The
expression context offers a syntactical superset of thegeneral context. Every valid and complete
serialization is also valid in theexpression context (completemeans that the serialization is
terminated by the end of the string).

In theexpression context, simple object serializations may be combined using the following operator
sings: “+” (plus, positive), “-” (minus, negate), “*” (multiply), “ /” (divide), “%” (modulo),~
(concatenation), “?:” (conditional), “&&” (logical AND), “||” (logical OR), “!” (logical NOT), “<”
(less than), “<=” (less or equal), “>” (greater than), “>=” (greater or equal), “==” (equal), “!=” (not
equal), “,” (sequence), “.” (selection), “[]” (index), “()” (method call).

If multiple operators are present, the expression nesting using the following precedence rules:

1. The operators with the highest precedence are nested first. The operator precedence values are
defined below.

2. For unary operators with equal precedence, the inner expressions are nested first.

3. For infix operators with equal precedence, the expressions are nested from the left to the right.

The list below specifies the operator syntax in detail. For every operator, the operator precedence is
specified. For every operand, the context is specified. The specified context applies only if the operand is
not combined by an operator precedence rule.

Selection operator “.” (precedence 9)
Syntax:object. selector
This represents a selection expression. Theselectorstring is interpreted inselection context
and theobjectstring is interpreted ingeneral context.

Index operator “[]” (precedence 9)
Syntax:object[index]
This represents an index expression. Theobjectstring is interpreted inselection context and
the indexstring is interpreted inarray context.

12

Method call operator “()” (precedence 9)
Syntax:object(arguments)
This represents a method call expression. Theobjectstring is interpreted inselection context
and theargumentsstring is interpreted inarray context.

Logical NOT operator “!” (precedence 8)
Syntax:! object
This represents a logical NOT expression. Theobjectstring is interpreted ingeneral context.

Arithmetic negate operator “-” (precedence 8)
Syntax:- object
This represents an arithmetic negation expression. Theobjectstring is interpreted ingeneral
context.

Arithmetic positive operator “+” (precedence 8)
Syntax:+ object
This represents an arithmetic positive expression. Theobjectstring is interpreted ingeneral
context.

Concatenation operator~ (precedence 7)
Syntax:operand1 ~ operand2
This represents a concatenation expression. Both operandsoperand1 andoperand2 are interpreted
in general context.

Multiply/divide/modulo operators “*”, “ /”, “ %” (precedence 7)
Syntax:

operand1 * operand2
operand1 / operand2
operand1 % operand2

This represents a multiplication/division/modulo expression. Both operandsoperand1 andoperand2
are interpreted ingeneral context.

Plus/minus operators “+”, “ -” (precedence 6)
Syntax:

operand1 + operand2
operand1 - operand2

This represents a plus/minus expression. Both operandsoperand1 andoperand2 are interpreted in
general context.

Approximate ordered comparison operators “< +-”, “ <= +-”, “ > +-”, “ >= +-” (precedence 5)
Syntax:

operand1 < operand2 +- operand3
operand1 <= operand2 +- operand3
operand1 > operand2 +- operand3
operand1 >= operand2 +- operand3

This represents an approximate ordered comparison expression. All operands are interpreted in
general context.

Ordered comparison operators “<”, “ <=”, “ >”, “ >=” (precedence 5)
Syntax:

operand1 < operand2
operand1 <= operand2
operand1 > operand2
operand1 >= operand2

This represents an ordered comparison expression. Both operandsoperand1 andoperand2 are
interpreted ingeneral context.

13

Approximate equality comparison operators approx-equal/approx-not equal “== +-”, “ != +-”
(precedence 5)
Syntax:

operand1 == operand2 +- operand3
operand1 != operand2 +- operand3

This represents an approximate equality comparison expression (compare for approximate equality,
approximate non-equality). All operands are interpreted in general context.

Equality comparison operators equal/not-equal “==”, “ !=” (precedence 5)
Syntax:

operand1 == operand2
operand1 != operand2

This represents an equality comparison expression (compare for equality, non-equality). Both
operandsoperand1 andoperand2 are interpreted ingeneral context.

Logical AND operator “&&” (precedence 4)
Syntax:operand1 && operand2
This represents a logical AND expression. Both operandsoperand1 andoperand2 are interpreted in
general context.

Logical OR operator “||” (precedence 3)
Syntax:operand1 || operand2
This represents a logical OR expression. Both operandsoperand1 andoperand2 are interpreted in
general context.

Sequential operator “,” (precedence 2)
Syntax:expression1 , expression2
This represents a sequential expression. Both operandsexpression1 andexpression2 are interpreted
in general context.

Conditional operator “?:” (precedence 1)
Syntax:condition? expression1 : expression2
This represents a conditional expression. All operandscondition, expression1, andexpression2 are
interpreted ingeneral context.

3.1.8 Thestring Context

Thestring context is used if the serialization is to be interpreted as astring. Instring context,
leading whitespace is skipped. If the first non-whitespace character is a quoting character (single quote or
double quote), the string is interpreted as if it was parsed in general context.

If the first non-whitespace character is not a quoting character, the entire serialization starting with the
first non-whitespace character is interpreted as a string. Escape sequences (introduced by a backslash
character) and variable references are accepted as if the string was enclosed in a pair of quoting characters.
If the string contains unquoted quoting characters, these quoting characters are interpreted literately.

3.1.9 Binary Objects

Binary objects are serialized either as text containing escape sequences for non-ASCII characters or as
base 64 encoded string. The text variant has the advantage ofbeing human readable but has the
disadvantage that line breaks or other whitespace characters may be disturbed when the serialization is
stored or transferred. The text variant is typically used for fragments of script code that are in itself
resistant to whitespace/line break modifications. The base64 encoding is completely 8 bit clean but takes
a little bit of extra storage/bandwidth.

14

Base 64 Encoding
The base 64 encoding of binary objects is introduced by a single ASCII percent sign “%”, followed by a
simple object interpreted inselection context2 representing theid field of the binary object, followed
by a single ASCII colon character “:”, followed by the base 64 encoded binarydatafield of the binary
object (called thedata section, and a terminating single ASCII percent sign. If theid of the binary object
is itself a binary object (i.e. the serialization starts with a percent sign), it has to be separated from the
initial percent sign by at least one whitespace character. Whitespace characters preceding the colon and
whitespace characters in the data section are ignored.

Text Encoding
The serialization as text is introduced by double ASCII percent signs “%%”, followed by theid represented
by a serialization of a simple object interpreted inselection context, followed by a single ASCII colon
“:”, followed by a thedatarepresented as ASCII text (called thedata section), followed by terminating
double ASCII percent signs. In the data section, leading whitespace up to (and including) the first line
break3 is ignored. If the leading whitespace does not contain a linebreak, the entire leading whitespace is
ignored.

Inside the binary section, special characters can be escaped using the sequence “\X”, followed by a single
non-alphanumeric character (which is replaced by that character) or two hex digits (specifying the byte
value). “\X” sequences are substituted only if the number of unescaped backslashes preceding the “X” is
odd. A trailing “\X” sequence (i.e. preceding the terminating double ASCII percent signs) is skipped
(ignored).

Examples for escape sequences in the data section:

X\\X
Not processed, since the number of unescaped backslashes preceding the second “X” is even.

X\X\\X1b
The sequence “\X\” is replaced by a single backslash character, the sequence “\X1b” is replaced
by an escape character (ASCIIESC). Note that the backslash character preceding the sequence
“\X1b” is escaped, hence the number of unescaped backslashes preceding the “X1b” is odd.

X\X%%
The sequence “\X” is skipped. The “%%” marks the end of the data section. If you wish to quote
double ASCII percent signs, you can use the sequence “%\X%”.

3.1.10 Variable References

Variable references are introduced by a dollar sign and are followed by areference string. When a
variable reference is resolved by a simple objects programming library, the reference string is passed to
the application which in turn generates a replacement object. The variable reference syntax offers three
syntax variants for specifying the reference string:

Simple Reference
The reference string is specified as a sequence of ASCII alphanumerics and underscores. The
sequence has contain at least one character. The sequence isterminated by a character that is not an
ASCII alphanumerics and not an underscore or by the end of theserialization.

Quoted Reference
The reference string is enclosed in double angle brackets (i.e. double less-than “<<” and double
greater-than “>>”. The reference string may contain variable references andcharacter escape
sequences (introduced by a backslash). If the reference string ends with a single backslash, the

2See section 3.1.1 on page 10.
3ASCII LF, ASCII CR, or ASCII CR–LF.

15

trailing backslash is ignored (this feature is required to encode a reference string ending with a
greater-than sign). (Note that if the reference string contains a double greater-than sign, it has to be
quoted as “>\>”.)

Grouped Reference
The reference string is delimited by a matching pair of grouping characters. The following
characters are grouping characters: “(”, “)”, “ [”, “]”, “ {”, “ }”. The delimiting pair may itself
contain matching pairs of quoting characters. Quoted grouping characters and characters contained
in a nested quoted reference are not considered for matching. The delimiting pair of grouping
characters is part of the reference string.

No whitespace is allowed between the dollar sign and the reference string.

Variable references using a quoted reference or a grouped reference may contain variable references.
When a variable reference is resolved, the variable references contained in the reference string have to be
resolved first. An application or library program resolvingvariable references should provide some sort of
loop detection.

3.1.11 Quoted Strings

A quoted stringis a sequence of characters enclosed in a pair of quoting characters. If the character
sequence contains non-ASCII characters, these charactersare interpreted as UTF-8 encoded UNICODE.
Invalid UTF-8 sequences or invalid (unpaired) UNICODE surrogate characters are silently discarded.

If a string is enclosed in double quotes variable referencesare recognized. A variable references within a
string is syntactically similar to the serializations of a variable referencing simple object as described in
section 3.1.10. Variable referencing in quoted strings is covered in paragraph 3.1.11 below.

Escape Sequences
To represent special characters, quoted strings may contain escape sequences similar to those available in
ISO C. The following escape sequences are recognized:

\a
Bell (ASCII BEL), code point0x07.

\b
Backspace (ASCIIBS), code point0x08.

\e
Escape (ASCIIESC), code point0x1b.

\E
The same as “\e”.

\f
Formfeed (ASCIIFF), code point0x0c.

\n
Newline (ASCIILF, Linefeed), code point0x0a.

\r
Carriage return (ASCIICR), code point0x0d.

\s
A literal ASCII SPACE, code point0x20.

\t
Horizontal TAB (ASCIIHT), code point0x08.

16

\v
Vertical TAB (ASCII VT), code point0x0b.

\LF, \CR, \CR LF
A skipped line break can be inserted by preceding the line break (either a UNIX styleLF, a
Mac-style singleCR, or a DOS/Windows styleCR–LF) with an unquoted backslash character. A
skipped line break is ignored.

\"
A literal double quote, code point0x22.

\’
A literal single quote, code point0x27.

\\
A literal backslash, code point0x5c.

\$
A literal dollar sign, code point0x24. A quoted dollar sign is not recogized as an introducing
character for variable references (see below).

\(
A literal unmatched opening parenthesis, code point0x28.

\)
A literal unmatched closing parenthesis, code point0x29.

\[
A literal unmatched opening bracket, code point0x5b.

\]
A literal unmatched closing bracket, code point0x5d.

\{
A literal unmatched opening brace, code point0x7b.

\}
A literal unmatched closing brace, code point0x7d.

\>
A literal greater-than sign, code point0x3e.

\xN
Hex escape. The “\x” is followed by two hex digits specifying an 8 bit character code. Note that
“\x00” is illegal, since strings may not contain null-characters.

\N
Octal escape. The “\” is followed by 1 to 3 octal characters. If an octal escape is followed by an
octal digit, it has to be padded with leading zeroes to make it3 digits long. The digits represent an 8
bit character code. Note that “\000” is illegal, since strings may not contain null-characters.

\uN
Unicode escape (Java style). The “\u” is followed by 4 hex digits specifying a 16 bit character
code. The use of “\u” escapes to form surrogate pairs is discouraged, use “\U” to specify code
points that can’t be represented as a 16 bit value.

\UN
UTF-32 Unicode Escape. The “\U” is followed by 8 hex digits specifying a 32 bit character code.
The use of “\U” escapes to form surrogate pairs is discouraged, these codepoints should be
represented by a single “\U” escape.

17

\&R;
Character reference. These references work similar to HTML/XML character references. All
symbolic character references of HTML 4.0 are supported. Numeric character references “\&#N;”
are also supported. Note that numeric character referencesare encoded in decimal, not in hex.

Variable References in Quoted Strings
Quoted strings enclosed in double quotes may contain variable references similar to the variable reference
serializations described in section 3.1.10.

A variable reference is introduced by an unquoted dollar sign4. The dollar sign is followed by areference
string. The syntax for the reference string is the same as for variable reference serializations described in
section 3.1.10. No whitespace is allowed between the dollarsign and the reference string.

Variable references using a grouped reference may contain variable references. When a variable reference
is resolved, the variable references contained in the reference string have to be resolved first.

Note: Quoted strings enclosed in single quotes cannotcontain variable references.

UTF-8 in Quoted Strings
Quoted strings may contain UNICODE UTF-8 sequences. Any sequences of characters in the range
0x80 – 0xff (i.e non-ASCII characters) that is not a valid UTF-8 sequences will be discarded. If the
string contains UNICODE surrogate character pairs, these pairs are replaced by the represented character.
Unpaired surrogate characters are discarded.

3.2 ASCII Serialization

Every simple object can be serialized as text using ASCII characters only. The only object type with a text
serialization that can contain non-ASCII characters is thestring object (string serializations may contain
UTF-8 sequences). However, every non-ASCII UNICODE character represented by a UTF-8 sequence
may be represented by an escape sequence as described in section 3.1.11.

4A literal dollar sign can be represented by quoting the dollar sign with a backslash “\$”.

18

4 Binary Serialization

The binary serialization is interpreted free of context. The length of the serialization may be determined
reliably from the serialization itself. Every object nested inside the represented simple object has a binary
serialization that is a substring of the serialization of the entire object.

Every binary serialization of a simple object is composed ofa type byte, an optional class name, and a
(possibly empty) sequence ofdata bytes.

4.1 The Type Byte

The type bytes indicated the objecttype(as defined in section 2.1) and a storage size indicator.

Bits Description

7 1

6 Class name present (1)

5 . . . 3 Object type (2)

2 . . . 0 Storage size (3)

(1) Class name present.
If this bit is set, the type byte is followed by a null-terminated UTF-8 string indicating the class
name of the object (classfield). If this bit is clear, no class name is associated with the object (i.e.
the class name is null).

(2) Object type.
The following list defines the type values for all object types:

Value Type Value Type

0 nil / bool 4 binary

1 int 5 array

2 float 6 expr

3 string 7 vref

(3) Storage size.
The semantics of the storage size depends on the object type.The storage size is determined from
the encoded value through the following table:

Value Storage Size Value Storage Size

0 0 4 64

1 8 5 96

2 16 6 128

3 32 7 extended

The storage sizes 96, 128, and “extended” are not used by the current version of this specification.
The storage sizes 96 and 128 are intended for encoding higherprecision numeric values, especially
96 and 128 bit floating point numbers. The special value “extended” might be used by a future
version for encoding arbitrary precision integer and floating point values.

19

4.2 The Class Name

If (and only if) bit 6 of the type byte is set, the type byte is followed by a null-terminated, UTF-8 encoded
string indicating the class name (classfield) of the simple object.

4.3 The Data Bytes

The format of the data contained in the data bytes of a binary serialization depends on the object type and
storage size defined in the type byte. For all data types, the storage size 0 indicates that no data bytes are
present in the serialization of the object. Such an object typically represents a suitable null-value.

4.3.1 The Typesnil and bool

The typenil is always of storage size 0. For objects of typebool, the truth value is encoded into the
storage size defined in the type byte. The storage size 8 indicates the valueFALSE, the storage size 16
represents the valueTRUE. Other storage sizes are not valid.

4.3.2 The Typeint

The data bytes contain the value of an object of typeint, encoded as a 2-complement signed integer
stored in big-endian byte order. The storage size indicatesthe bit width (and hence the number of data
bytes). The following storage sizes are allowed: 0, 8, 16, 32, and 64. If the storage size is 0, the
represented integer value is 0.

4.3.3 The Typefloat

For objects of typefloat, both the size and the format of the data bytes depend on the storage size.

Storage Size Value Encoding

0 No encoding. The represented value is 0.

8 The value is encoding as an 8 bit signed fixed point number,
2-complement. The object value 1 is represented by the encoded value
10.

16 The value is encoded as a 16 bit signed fixed point number,
2-complement. The object value 1 is represented by the encoded value
100.

32 The value is encoded as a 32 bit ANSI/IEEE 754-1985 floating point
number.

64 The value is encoded as a 64 bit ANSI/IEEE 754-1985 floating point
number.

For storage size 8, the encodable values are in the range−12.8 . . . 12.7 (in steps of 0.1). For storage size
16, the encodable values are in the range−327.68 . . . 327.67 (in steps of 0.01).

4.3.4 The Typestring

The typestring represents an extended UNICODE string as defined in section 2.3 (page 7). The string
is stored as a (length, cdata) tuple, wherelengthindicates the length of the character datacdata. cdatais a
sequence oflengthbytes holding the string using the UNICODE UTF-8 encoding.

20

The lengthis stored as a big-endian unsigned integer. The width (number of bits) of that integer is
indicated by the storage size, which may be 0, 8, 16, 32, or 64.Other storage sizes are not valid. The
storage size 0 indicates an empty string.

4.3.5 The Typebinary

Objects of typebinary are stored as a triple (id, length, bdata).

id
This is the serialization of an arbitrary simple object representing theid field of the binary object.

length
This is the length of the binary data, in bytes, stored as a big-endian unsigned integer. The width
(number of bits) of that integer is indicated by the storage size, which may be 0, 8, 16, 32, or 64.
Other storage sizes are not valid. The storage size 0 indicates a length of 0 bytes.

bdata
lengthbytes of binary data.

4.3.6 The Typearray

The serialization of anarray object is stored as an alternating sequence of keys and values, preceded by
the length of the array (i.e. the number of values).

(length, key0, value0, ...,keylength−1, valuelength-1)

The keys and values are stored as binary serializations of simple objects.lengthis stored as a big-endian,
unsigned integer. The width (number of bits) of that integeris indicated by the storage size, which may be
0, 8, 16, 32, or 64. Other storage sizes are not valid. The storage size 0 indicates an empty array.

4.3.7 The Typeexpr

An expression object is serialized to a expression control byte and a number of operand objects. The
expression control byte determines the type of expression and the number of operands.

Bits Description

7 Reserved, must be 0

6 . . . 1 The expression type, see below

1, 0 The number of operands minus 1

The encoding used for the expression types is shown in table 1.

The number of operands specified in the expression control byte must match a defined simple object
expression type. Note that the number of operandsminus oneis stored in the low two bits of the
expression control byte, i.e. the value 0 indicates 1 operand, the value 2 indicates 3 operands.

The storage size of an expression object is always 0. Other storage sizes are not valid.

Index and Method Call Operands
The right operands of an index or method call operand is always required to by of typearray, as defined
in section 2.4 (page 7). If the operand is an array containingexactly one element, the elementvalueis not
of typearray, and the elementkeyis NIL , then that element may be encoded directly instead of
encoding and array containing that element.

21

Value Operator Sign Expression Type

0 + Plus (2 operands) or unary positive (1 operand)

1 - Minus (2 operands) or negation (1 operand)

2 * Multiplication (2 operands)

3 / Division (2 operands)

4 % Modulo (2 operands)

5 < Ordered comparison: less-than (2 operands) or approximate-less-than
(3 operands)

6 <= Ordered comparison: less-or-equal (2 operands) or
approximate-less-or-equal (3 operands)

7 > Ordered comparison: greater-than,(2 operands) or
approximate-greater-than (3 operands)

8 >= Ordered comparison: greater-or-equal (2 operands) or
approximate-greater-or-equal (3 operands)

9 == Equality comparison (2 operands) or approximate equality comparison
(3 operands)

10 !=, ! Non-equality comparison (2 operands) or approximate non-equality
comparison (3 operands) or logical negation (1 operand)

11 && Logical AND (2 operands)

12 || Logical OR (2 operands)

13 ?: Conditional (3 operands)

14 , Sequence (2 operands)

15 . Selection (2 operands)

16 [] Index (2 operands)

17 () Method call (2 operands)

18 ~ Concatenation (2 operands)

Table 1: Expression Type Encoding

4.3.8 The Typevref

An object of typevref is serialized to a tuple (length, vdata). Thevdataholdslengthbytes containing an
extended UNICODE string (see section 2.3 on page 7). The string represents the reference string of the
variable reference. Nested variable references are represented by variable references in the extended
string.

The lengthis stored as a big-endian unsigned integer. The width (number of bits) of that integer is
indicated by the storage size, which may be 0, 8, 16, 32, or 64.Other storage sizes are not valid.

22

5 Addresses

An addressis a simple object (or serialization of a simple object) representing a path to a subobject nested
within a simple object. An address is an arbitrary simple object.

5.1 Address Resolution

Address objects are applied to simple objects to select a subobject of that object. Such a subobject may
either be a propper subobject or a symbolic subobject.

A propper subobjectof a simple object is an object that is completely contained within that object. A
propper subobject is actually a part of the containing object.

A symbolic subobjectis an object containing a propper subobject of an object. A symbolic subobject is
typically the result of a resolution process where some parts of the address could not be resolved.

5.1.1 Address Resolution Operations

The following operations may be performed in an address resolution process:

Self Substitution
The address object not substituted (i.e. replaced by itself).

Object Substitution
The address object is substituted by the entire object the address is being applied to.

Quoted Substitution
A quoted substitutionis performed on aoperandobject. The address is resolved to the operand.

Selection
A selection operationis performed on adictionaryobject using aselectorobject. If the dictionary
is of typearray, the elements of the array are processed inreverse orderuntil an element is found
whose key compares equal5. If a matching key was found, the address is resolved to associated
value. If the key is not found or if the dictionary is not of typearray, then the address is resolved
to a selection expression object where the first operand is the dictionary and the second operand is
the selector.

Index
An index operationis performed on asequenceobject using anindex. If the indexI is of typeint,
it is used to select(I +1)th element from the sequence. IfI is negative, then the index is relative to
the end of the sequence, i.e. it addresses the(L+ I +1)th element from the sequence, whereL is the
length of the sequence. An index substitution is performed if and only if the index is of typeint
and the sequence is of typearray, string, orexpr (expression).

The lengthL of the sequence and the exact definition of anelementof the sequence depends on the
sequence type:

array
The lengthL of an array is the number of values held in the array. Here, anelementof the
array is a single value (i.e. not the key/value pair). The element keys are ignored in an index
operation.

string
The length of a string is number of UNICODE characters and variable references in the
extended string (a variable references is treated like a single UNICODE character). An
element is a single UNICODE character or a variable reference, which is represented by a

5The comparison of simple objects is covered in section 2.5, page 8.

23

single ASCII character, a UTF-8 character sequence, or an extended string escape sequence.
In an index operation, a single UNICODE character or variable reference is represented by a
string object holding that character.

expr
The length of an expression is the number of operands. An element of an expression is a
single operand.

The valueE = I for I ≥ 0 orE = L+ I for I < 0 is called theeffective index E. If E is out of bounds
(i.e. eitherE < 0 orE ≥ L), then the address is resolved toNIL . If the sequence is not of a valid
sequence type (array, string, expr) or the index is not of typeindex, then the address is
resolved to an index expression where the first operand is thesequence and the second operand is a
one element array containing the index.

Slice
Theslice operationis similar to the index operation. A slice operation is performed on asequence
using a pair of bounds called theupper boundand thelower bound. A slicing subsection is
performed if both bounds are of typeint and the sequence is of typearray or string.

The lengthL of the sequence and the exact definition of anelementof the sequence depends on the
sequence type:

array
The lengthL of an array is the number of values held in the array. Here, anelementof the
array is a single value (i.e. not the key/value pair). The element keys are ignored in an index
operation.

string
The length of a string is number of UNICODE characters and variable references in the
extended string (a variable reference is treated like a single UNICODE character). An element
is a single UNICODE character or a variable reference, whichis represented by a single
ASCII character, a UTF-8 character sequence, or an extendedstring escape sequence. In an
index operation, a single UNICODE character or variable reference is represented by a string
object holding that character or variable reference.

Let I be the lower bound andJ the upper bound. Theeffective lower bound Eandeffective upper
bound Fare defined as:

E =



















0 if I < −L−1

L+1+ I if −L−1<= I < 0

I if 0 <= I <= L

L if I > L

F =



















0 if J < −L−1

L+1+J if −L−1<= J < 0

J if 0 <= J <= L

L if J > L

The resolved object depends on the sequence type:

array
If the sequence is of typearray, the address is resolved to an array containing all elements
from the indexE (inclusive) to the indexF (exclusive). IfE ≥ F, the address is resolved to an
empty array.

string
If the sequence is of typestring, the address is resolved to a string containing all
UNICODE characters and variable references from the indexE (inclusive) to the indexF
(exclusive). IfE ≥ F , the address is resolved to an empty string.

If the sequence is not of typearray or string or if at least one of the bounds is not of typeint,
the address is resolved to an index expression where the firstoperand is the sequence and the
second operand is an array containing the lower bound at index 0 and the upper bound at index 1.

24

5.1.2 The Resolution Process

The address resolution is a recursive process, performing the following steps:

1. If the address is a variable reference (i.e. an object of typevref), then a variable substitution step
is performed. If the substitution succeeds, the address is replaced by the resulting object. If the
substitution fails, thevref object itself is used as the address.

2. If the address is an object of typeexpr (expression), then the resolution function is applied to all
operands of typeexpr.

3. The resolution function (see below) is applied to the result of step 2.

5.1.3 The Resolution Function

Theresolution functionitself is described by the following set of rules, matched inthe specified order:

Object Substitution
If the address isNIL , it is resolved to the entire objectX. resolved to the address object itself. This
resolution is called anobject substitution.

Object Selection
An object selection substitutionis performed if the address is a selection expression where first
operand isNIL . A selection operationis performed (as defined in section 5.1.1). Thedictionary is
the entire object the address is applied to and theselectoris the second operand of the selection
expression.

Object Index
An object index substitutionis performed if the address is an index expression where the first
operand isNIL , the second operand is an array holding a single element, andthe key of the array
element isNIL . An index operationis performed (as defined in section 5.1.1). Thesequenceis the
entire object the address is applied to and theindexis the value of the array element.

Object Slice
An object index substitutionis performed if the address is an index expression where the first
operand isNIL , the second operand is an array holding exactly two elements, and the key of both
array elements isNIL . A slice operationis performed (as defined in section 5.1.1). Thesequenceis
the entire object the address is applied to, thelower boundis the value of the first array element, and
theupper boundis the value of the second array element.

Object Append
An append substitutionis performed of the address is an index expression where the first operand is
NIL and the second operand is an empty array. Aslice operationis performed (as defined in section
5.1.1). Thesequenceis the entire object the address is applied to, thelower boundis the length of
the sequence and theupper boundis equal to thelower bound(effectively specifying an empty slice
at the end of the sequence).

Combined Selection
A combined selectionis performed if the address is a selection expression where the first operand is
not NIL . A selection operationis performed (as defined in section 5.1.1). Thedictionaryis first
operand and theselectoris the second operand of the selection expression.

Combined Index
A combined index selectionis performed if the address is an index expression where the first
operand isnot NIL , the second operand is an array holding a single element, andthe key of the array
element isNIL . An index operationis performed (as defined in section 5.1.1). Thesequenceis first
operand and theindexis the value of the array element of the second operand.

25

Combined Slice
A combined slice selectionis performed if the address is an index expression where the first operand
is not NIL , the second operand is an array holding exactly two elements, and the key of both array
elements isNIL . A slice operationis performed (as defined in section 5.1.1). Thesequenceis first
operand of the index expression, thelower boundis the value of the first array element of the second
operand, and theupper boundis the value of the second array element of the second operand.

Quoted Selection
A quoted selectionis performed if the address is an arithmetic positive expression (i.e. an operand
combined with a unary plus operator). Aquoted substitutionis performed as defined in second
5.1.1. Theoperandis the operand of the expression.

Self Selection
A self selectionis performed if the address matches none of the patterns listed above. Aself
substitution operationis performed as described in section 5.1.1.

5.2 Pure Addresses

A pure addressis an address that is one of the following:

1. An object of typenil.

2. A selection expression where the first operand is a pure address and the second operand is not a
selection or index expression.

3. An index operation where the first operand is a pure addressand the second operand is an array
holding one or two object of typeint.

A pure address resolutionis a restricted address resolution process that yields either a propper subobject
of the object it is applied to or an error indication6.

5.3 Considerations and Examples

Addresses are typically applied to an object specified elsewhere. A typical application of addresses is an
API7 of a programming library providing access to objects nestedin other objects. Such an API might
define a method of the class representing a simple object which accepts a text serialization of an address
(using theexpression context). For example:

SObject x, y;

x = obtain_an_instance_of_SObject();
y = x.get("NIL.prefs.(${ENV}.USER).editor");

We’ll assume that the application has set up a variable reference substitution mechanism that substitutes
“${ENV}” with an (associative) array object representing the process environment. In fact, theget()
method could automatically prepend the string"NIL" if the argument starts with a dot or bracket. In this
case, the address could be abbreviated to

y = x.get(".prefs.(${ENV}.USER).editor");

To address an element value from an associative array where the element key is itself an address, the
selection key has to be quoted. The following address resolves to the string"FOO" (represented as a text
serialization inexpression context):

6What that error indication looks like depends on the application or programming library handling the restricted address resolution.
7Application Programming Interface.

26

[(NIL.key1) = FOO (NIL[42]) = BAR].(+ NIL.key1)

This example also demonstrates that the very left operand ofan address does not have to beNIL . In fact,
theNIL reference to the object the address is being applied may appear multiple times in the address, or
not at all. Here’s an example where theNIL reference appears somewhere nested in the address object
(again written in Java style pseudo code):

x = new SObject(1);
y = x.get("[FOO, BAR, FIZZLE][NIL]");

The value ofy will be an object representing the string"BAR".

5.4 UNICODE Normalization

Some simple objects hold UNICODE strings. These are all simple objects of typestrings as well as all
objects associated with a class name. These UNICODE stringsare stored as sequences of numbers
resembling UNICODE code points. These code points arenot limited to 16 bits.

5.4.1 Surrogate Pairs

UNICODE code points beyond0xffff can be represented as pairs of code points below0xffff. The
code points making up such pairs are calledsurrogates, the pairs are calledsurrogate pairs. The first
surrogate in a pair is called thehigh surrogate, the second is called thelow surrogate. Surrogate pairs are
used in the UTF-16 encoding to represent code points that could otherwise not be represented in 16 bits.

A simple objectnevercontains surrogates. All matching pairs of surrogates are resolved and all
unmatched surrogates are silently discarded.

5.4.2 Normalization

Some characters have different UNICODE representations (e.g. accented characters). Simple objects
representing the same character string with different character representations willnotcompare equal. To
avoid this problem, an application may

a) use a normalization convention. That means that the application makes sure that all strings are
normalized whenever a simple object is created.

b) install a normalization callback. A programming libraryshould provide a hook for installing a
string normalization callback function.

The UNICODE standard defines sevaral string normalizations.

27

A Serialization Examples

This section contains a collection of serialization examples for text and binary serialization. Binary data
will be represented commented as hexdumps.

A.1 Text Serialization Examples

A.2 Binary Serialization Examples

28

B Expression Semantics

This section defines the expression semantics implemented by the default environment. The expression
semantics resembles the typical operator semantics of programming languages like C or Java.

Some operands examine the truth value of an operand. The truth value is defined as follows:

FALSE

If the object isNIL , FALSE, 0 (zero of typeint), 0.0 (zero of typefloat), an empty string, a
binary object (typebinary) with a data body length of 0, or en empty array (typearray).

Undefined
If the object is of typeexpr or vref.

TRUE

For all other objects.

The expression semantics defined in this section are implemented in the default class environment of the
standard environment (see section C.1 by overriding theClassEnv::eval()method (or by
implementing theeval() callback function, if the programming environment does notsupport
inheritance). As a consequence, the expression semantics below are applicable only to expression objects
where the class name of the first operand is associated with the default class (i.e. there’s no specific class
for the class name or the object has no class name).

Note that the class environment used for evaluating an expression object is derived from the class name of
the first operand, not the class name of the expression itself. If the expression object has a class name, that
class name is applied to the object resulting from the evaluation.

B.1 Arithmetic Semantics

For arithmetic expressions theEnv::eval() method performs a recursive evaluation of all operands
before the operator is examined. Arithmetic expressions are expressions of the following types:
EXPR_POS, EXPR_NEG, EXPR_NOT, EXPR_PLUS, EXPR_MINUS, EXPR_MUL, EXPR_DIV,
EXPR_MOD, EXPR_CAT, EXPR_LS, EXPR_LE, EXPR_GT, EXPR_GE, EXPR_EQ,
EXPR_EQ_APPROX, EXPR_NE, EXPR_NE_APPROX, EXPR_AND, EXPR_OR.

B.1.1 EXPR_POS (Unary positive operator)

If the operand is of typebool, it is promoted to typeint whereFALSE is mapped to0 andTRUE is
mapped to1.

B.1.2 EXPR_NEG (Unary negation operator)

If the operand is a number or a boolean (i.e. of typebool, int, orfloat), it is negated numerically.
For booleansFALSE is replaced by0 andTRUE is replaced by-1.

B.1.3 EXPR_NOT (Unary logical negation operator)

If the operand is not of typeexpr or vref, the expression is replaced by the negation of the truth value
of the operand.

B.1.4 EXPR_PLUS (Binary plus operator)

The expression is evaluated if one of the following conditions holds:

29

1. If both operands are numbers (i.e. of typeint or float), the expression is replaced by the sum of
both numbers. If both operands are of typeint, the result will be of typeint, else the result is of
typefloat.

2. Both operands are of typestring. The expression is replaced by the sequential concatenation of
both strings. Note that variable reference are resolved when both operands are evaluated recursively.

3. The first operand is of typearray, the second operand is not of typearray. The expression is
replaced by an array derived from the first operand, where every value is replaced by the evaluated
EXPR_PLUS-expression created from the original array element value and the second expression
operand.
Example:

([2, key: a] + 1) is evaluated to[3, key: (a + 1)]

4. The first operand is not of typearray, the second operand is of typearray. The expression is
replaced by an array derived from the second operand, where every value is replaced by the
evaluatedEXPR_PLUS-expression created from the first expression operand and the original array
element value.
Example:

(1 + [key: 2, a]) is evaluated to[key: 3, (1 + a)]

5. Both operands are arrays of equal length. The expression is replaced by an array derived from the
first operand where all keys are taken from the first operand and the values are replaced by
evaluatedEXPR_PLUS-expressions created from positionally corresponding element values.
Example:

([key1: 1, 2, a, b] + [key2: 3, c, 4, d])

is evaluated to

[key1: 4, (2 + c), (a + 4), bd]

Note that the array evaluations are preformed recursively,using the class environment matching the
respective expression. An array may contain element valueswith a class matching a class environment
implementing different evaluation semantics.

B.1.5 EXPR_MINUS (Binary minus operator)

The expression is evaluated if one of the following conditions holds:

1. If both operands are numbers (i.e. of typeint or float), the expression is replaced by the
subtraction of both numbers. If both operands are of typeint, the result will be of typeint, else
the result is of typefloat.

2. The first operand is of typearray, the second operand is not of typearray. The expression is
replaced by an array derived from the first operand, where every value is replaced by the evaluated
EXPR_MINUS-expression created from the original array element value and the second expression
operand.
Example:

([2, key: a] - 1) is evaluated to[1, key: (a - 1)]

3. The first operand is not of typearray, the second operand is of typearray. The expression is
replaced by an array derived from the second operand, where every value is replaced by the
evaluatedEXPR_MINUS-expression created from the first expression operand and the original array
element value.
Example:

30

(1 - [key: 2, a]) is evaluated to[key: -1, (1 - a)]

4. Both operands are arrays of equal length. The expression is replaced by an array derived from the
first operand where all keys are taken from the first operand and the values are replaced by
evaluatedEXPR_MINUS-expressions created from positionally corresponding element values.
Example:

([key1: 1, 2, a, b] - [key2: 3, c, 4, d])

is evaluated to

[key1: -2, (2 - c), (a - 4), (b - d)]

Note that the array evaluations are preformed recursively,using the class environment matching the
respective expression. An array may contain element valueswith a class matching a class environment
implementing different evaluation semantics.

B.1.6 EXPR_MUL (Multiplication operator)

The expression is evaluated if one of the following conditions holds:

1. If both operands are numbers (i.e. of typeint or float), the expression is replaced by the
subtraction of both numbers. If both operands are of typeint, the result will be of typeint, else
the result is of typefloat.

2. The first operand is of typearray, the second operand is not of typearray. The expression is
replaced by an array derived from the first operand, where every value is replaced by the evaluated
EXPR_MUL-expression created from the original array element value and the second expression
operand.

3. The first operand is not of typearray, the second operand is of typearray. The expression is
replaced by an array derived from the second operand, where every value is replaced by the
evaluatedEXPR_MUL-expression created from the first expression operand and the original array
element value.

4. Both operands are arrays of equal length. The expression is replaced by an array derived from the
first operand where all keys are taken from the first operand and the values are replaced by
evaluatedEXPR_MUL-expressions created from positionally corresponding element values.

See section B.1.5 for examples.

B.1.7 EXPR_DIV (Division operator)

The expression is evaluated if one of the following conditions holds:

1. If both operands are numbers (i.e. of typeint or float), the expression is replaced by the
quotient (division) of both numbers. If both operands are oftypeint and the second operand is not
0, the result will be of typeint, else the result is of typefloat.

2. The first operand is of typearray, the second operand is not of typearray. The expression is
replaced by an array derived from the first operand, where every value is replaced by the evaluated
EXPR_DIV-expression created from the original array element value and the second expression
operand.

3. The first operand is not of typearray, the second operand is of typearray. The expression is
replaced by an array derived from the second operand, where every value is replaced by the
evaluatedEXPR_DIV-expression created from the first expression operand and the original array
element value.

31

4. Both operands are arrays of equal length. The expression is replaced by an array derived from the
first operand where all keys are taken from the first operand and the values are replaced by
evaluatedEXPR_DIV-expressions created from positionally corresponding element values.

See section B.1.5 for examples.

B.1.8 EXPR_MOD (Modulo operator)

The expression is evaluated if one of the following conditions holds:

1. If both operands are numbers (i.e. of typeint or float), the expression is replaced by the
division residue of the first number divided by the second. Note that floating point numbers are
allowed for this operation. If both operands are of typeint and the second operand is not0, the
result will be of typeint, else the result is of typefloat. If the second operand is0 or 0.0, the
result will benan (floating point NAN, “Not A Number”).

2. The first operand is of typearray, the second operand is not of typearray. The expression is
replaced by an array derived from the first operand, where every value is replaced by the evaluated
EXPR_MOD-expression created from the original array element value and the second expression
operand.

3. The first operand is not of typearray, the second operand is of typearray. The expression is
replaced by an array derived from the second operand, where every value is replaced by the
evaluatedEXPR_MOD-expression created from the first expression operand and the original array
element value.

4. Both operands are arrays of equal length. The expression is replaced by an array derived from the
first operand where all keys are taken from the first operand and the values are replaced by
evaluatedEXPR_MOD-expressions created from positionally corresponding element values.

See section B.1.5 for examples.

B.1.9 EXPR_CAT (Concatenation operator)

The expression is evaluated if one of the following conditions holds:

1. Both operands are of typearray. The expression is replaced by the concatenation of both arrays.

2. Both operands are strings. The expression is replaced by the concatenation of both strings.

3. One of both operands isNIL . The expression is replaced by the operand that is notNIL .

B.1.10 EXPR_LS (Less-than comparison operator)

The expression is evaluated if one of the following conditions holds: If both operands are comparable (see
section B.1.20), the expression is replaced by a boolean resulting from a “less-than” comparison.

B.1.11 EXPR_LE (Less-or-equal comparison operator)

If both operands are comparable objects (see section B.1.20), the expression is replaced by a boolean
resulting from a “less-or-equal” comparison.

32

B.1.12 EXPR_GT (Greater-than comparison operator)

If both operands are comparable objects (see section B.1.20), the expression is replaced by a boolean
resulting from a “greater-than” comparison.

B.1.13 EXPR_GE (Greater-or-equal comparison operator)

If both operands are comparable objects (see section B.1.20), the expression is replaced by a boolean
resulting from a “greater-or-equal” comparison.

B.1.14 EXPR_EQ (Equals comparison operator)

If both operands are comparable objects (see section B.1.20), the expression is replaced by a boolean
resulting from a “equal” comparison.

B.1.15 EXPR_EQ_APPROX (Equals approximate comparison operator)

If the first two operands are comparable objects (see sectionB.1.20) and the third operand is a number, the
expression is replaced by a boolean resulting from a “approximate-equal” comparison (see section B.1.21
on approximate comparisons).

B.1.16 EXPR_NE (Not-equal comparison operator)

If both operands are comparable objects (see section B.1.20), the expression is replaced by a boolean
resulting from a “not-equal” comparison.

B.1.17 EXPR_NE_APPROX (Not-equal approximate comparison operator)

If the first two operands are comparable objects (see sectionB.1.20) and the third operand is a number, the
expression is replaced by a boolean resulting from a “not-approximate-equal” comparison (see section
B.1.21 on approximate comparisons).

B.1.18 EXPR_AND (Logical AND operator)

If both operands have a defined truth value (i.e. are not of typeexpr or vref), the expression is replaced
by the logical AND of the truth values of both operands. In contrast to most programming languages, this
operator has no shortcut semantics, i.e. both operands are evaluatedbeforethe operation is performed.

B.1.19 EXPR_OR (Logical OR operator)

If both operands have a defined truth value (i.e. are not of typeexpr or vref), the expression is replaced
by the logical OR of the truth values of both operands. In contrast to most programming languages, this
operator has no shortcut semantics, i.e. both operands are evaluatedbeforethe operation is performed.

B.1.20 Comparable Objects

In an ordered comparison (“less-than”, “less-or-equal”, “greater-than”, “greater-or-equal”), two objects
are comparable if

• both objects are numbers (i.e. of typeinteger or float),

33

• both objects are of typestring, or

• both objects are arrays of equal length where all keys areNIL and all corresponding pairs of
elements are comparable.

In an ordered approximate comparison (“approximate-less-than”, “approximate-less-or-equal”,
“approximate-greater-than”, “approximate-greater-or-equal”) or an approximate equality comparison
(“approximate-equal”, “not-approximate-equal”), two objects are comparable if

• both objects are numbers (i.e. of typeinteger or float),

• both objects are array where all keys areNIL and all corresponding pairs of elements are
comparable.

In an equality comparison (“equal”, “not-equal”), any two objects are comparable.

For ordered comparisons, numbers are compared by their numerical value, strings are compared lexically
by the numerical order of the UNICODE code points, arrays arecompared recursively and the result is the
logical AND of the results of the element comparisons8.

B.1.21 Approximate Comparisons

An approximate comparisons is an operation with three operands. The first and second operands are
compared using a fuzz value specified in the third operand. The fuzz value causes the result to beTRUE,
even if the tested condition is missed by an amount smaller orequal to the specified fuzz value. (Note that
theEXPR_NE_APPROX is the exact opposite ofEXPR_EQ_APPROX, that’s why it is called
“not-approximate-equal” instead of “approximate-not-equal”.) Approximate comparisons can not be
applied to strings.

B.2 Programmatic Semantics

The following expression types areprogrammatic expressions. For programmatic expressions, the
evaluation of operands may be deferred or skipped dependingon other operands.

EXPR_COND (Conditional operator)
A conditional expression is always replaced by an evaluatedexpression. The first operand of a
conditional expression is interpreted as a truth value. If the truth value of the first operand is
undefined (i.e. the operand is of typevref or expr), then the operand is evaluated once and
checked again. Depending on the truth value, one of the following actions is taken:

TRUE

The second operand of the conditional expression is evaluated and the expression is replaced
by the result of that evaluation. The third operand is discarded without being evaluated.

FALSE

The third operand of the conditional expression is evaluated and the expression is replaced by
the result of that evaluation. The second operand is discarded without being evaluated.

Undefined
The conditional expression is replaced with a conditional expression where the first operand is
replaced with the evaluated first operand and the second and third operand are kept. The class
of the expression (if present) is kept.

8As ca consequence, the result of a comparison of two empty arrays is alwaysTRUE.

34

EXPR_SEQ (Sequence operator)
A sequence expression is always replaced by an evaluated expression. The first operand of the
sequence expression is evaluated and the result is discarded9. The second operand is also evaluated
and the sequence expression is replaced with the result of that evaluation.

EXPR_SEL (Selection operator)
A selection expression is always replaced by an evaluated expression. The selection operator is
evaluated by performing a selection operation as defined in section 5.1.1 “Address Resolution
Operations” on page 23. Thedictionaryis the result of the evaluation of the first operand, the
selectoris the result of the evaluation of the second operand. The selection expression is replaced
with the result of the selection operation.10

EXPR_INDEX (Index operator)
An index expression is evaluated only if the second operand is an array with all keysNIL holding
exactly one or exactly two elements.

If the second operand is a one element array, the index expression is evaluated by performing an
index operation as defined in section 5.1.1 “Address Resolution Operations”. Thesequenceis the
result of the evaluation of the first operand expression is replaced with the result of the index
operation, theindexis the result of the evaluation of the array element of the second operand. The
index expression is replaced with the result of the index operation.

If the section operand is a two element array, the index expression is evaluated by performing a slice
operation as defined in section 5.1.1 “Address Resolution Operations”. Thesequenceis the result of
the evaluation of the first operand, thelower boundis result of the evaluation of the first array
element of the second operand, theupper boundis the result of the evaluation of the second element
of the second operand. The index expression is replaced withthe result of the slice operation.

EXPR_CALL (Call operator)
A call expression is evaluated only if the first operand is a selection expression and the second
operand is an array.11 A call operation is performedwithoutprior evaluation of the second operand.

The result of the evaluation of the first operand of the first operand of the call expression (i.e. the
first operand of the selection expression) is called thetargetof the call expression; the result of the
evaluation of the second operand of selection expression iscalled theselectorif the call expression;
the (unevaluated) second operand of the call expression is called theargument arrayof the call
expression.

The call expression is evaluated using theClassEnv::call()method of the class environment
associated with the target of the call expression. If the target has no class name or no class
environment matches the class name of the target and the environment object provides a default
class environment, that default class environment is used to evaluate the call expression. If no class
environment matches the target and no default class environment is available, the call expression is
replaced by call expression where the first operand of the selection expression is replaced with the
target.

9Note that the evaluation may have a side effect.
10If the selection itself should be an expression, thequote method from the standard default class (see section C.1) canbe used

to quote the expression.
11By definition, the second operand of a call expression is always of typearray.

35

C Standard Object Classes

The standard environment provides class environments for aset of class names and a default class
environment.

All of the class environments below implement theClassEnv::call()method. Every call method
dispatches a number of method names. If thecall() method is called with a non-string selector or an
unrecognized selector, or if the argument array does not match the formal parameter definition of the
dispatched method, thecall() method returns a call expression equivalent to the call expression being
evaluated, but with a clear class name.12 For every class, a list of method prototypes is defined.

C.1 The Standard Default Class

The standard default class environment implements theClassEnv::eval() and
ClassEnv::call()methods. Theeval() method implements the standard expression semantics
defined in appendix B.

The standard default class environment defines the following methods:

quote(object)
The method returns the specified parameterobjectas is. The called object is not evaluated and is
typically specified asNIL . The purpose of this method is to prevent an expression object from being
evaluated (for example for specifying an expression as a selector in a selection operation). Example
(in expression context):

$(exprdict).(nil.quote(($a + $b)))

The expression($a + $b) is used as the selector in the selection operation performedwhen the
selection expression is evaluated.

C.2 Thetime Class Environment

Thetime class represents an absolute time and date information. Instances of thetime class use the
ISO 8601 format for representing a time in a serialized form.For living objects, either a string
representing (in ISO format) or an epoch representation is used.

Epoch Representation
The time is represented as the number of milliseconds since the epoch date January 1st 1970,
00:00 UTC.13

ISO 8601 Representation
The time is represented as a string in ISO 8601 format. An exact definition of the time format is
given in section C.2.1.

TheClassEnv::pack()method converts time objects in epoch representation to ISOformat.14 The
ClassEnv::unpack()method converts an ISO time representation as defined in section C.2.1 to
epoch representation. TheClassEnv::eval()method is overridden to implement simple arithmetic
on time objects (as defined in section C.2.4).

12If the call expression being evaluated is associated with a class name, that class name will be attached to the resulting object.
Hence, if the call can not be dispatched, a call expression equal to the expression being evaluated is created by the evaluation.

13This is equivalent to the Java time representation.
14Complete calendar date representation as defined in section5.4.1 a) of the ISO 8601:2000 standard, using UTC representation

(Z suffix).

36

C.2.1 The ISO 8601 Time and Data Format

The string representation for dates used by thetime class environment uses a subset of the
ISO 8601:2000 standard. An instance of a time object is encoded as a combination of an ISO date and an
ISO time of day as defined in section 5.4 of the standard. This definition makes no assumptions about
extra agreements about the time representation. Truncatedand expanded representations are not valid.
Decimal fraction notations for hours, minutes, or seconds are allowed. The fraction should be separated
by a comma, but a period must also be accepted by the decoder.

Encoding the ISO Format
The encoder of the ISO format (as implemented by theClassEnv::pack()method) must
generate aextended completecalendar date representation as defined in section 5.4.1 a) of the
ISO 8601:2000 standard, using the UTC time. If the time can not be represented with 1 second
precision, the decimal fraction part of the second is separated by a comma. For example, the 27th of
August 2002, 16:47:00 and 834 milliseconds UTC is represented as:

2002-08-27T16:47:00,834Z

The same time without the milliseconds fraction is represented as:

2002-08-27T16:47:00Z

Decoding the ISO Format
The decoder must be capable of decoding a time and date stringconforming to the ISO 8601:2000
standard, section 5.4 to an epoch representation, excluding truncated time and/or date
representations (as defined in sections 5.2.3.3 and 5.3.1.4of the standard) and expanded date
representations (as defined in section 5.2.3.4 of the standard). Note that time of day representations
with reduced precision and local time representations and decimal fraction representations must be
decoded as defined in the standard.
Examples:

20020827T1647Z Basic representation with reduced precision in the time of day.

1985102T1015 Local time in ordinal representation (calendar day 102 of the
year 1985).

1985-W15-1T10:15+04 Extended week date (monday of calendar week 15), time of day
with reduced precision, UTC + 4 hours.

C.2.2 The Epoch Representation

The epoch representation encodes the (positive or negative) number of milliseconds since the 1st of
January 1970, 00:00 midnight UTC. The calculation is done ona formula ignoring leap seconds, leap
years are accounted for as defined in official standards. (Note that including leap seconds in the
conversion folmula is not feasable, since it is hardly possible to predict for which years the IERS
(International Earth Rotation Service) will announce a leap second.)

Note that implementations based on a POSIX.1 compliant implementation of the standard C library
functionsmktime(), gmtime(), andlocaltime() will not handle leap years correctly for dates
before the year 1901 and after the year 2099.

C.2.3 Methods of thetime Class

Thetime class environment provides methods for creating, converting, and evaluating time objects.
Some of the methods use an array representation of a time. This representation is inspired by (but not
compatible to) thestruct tm of the standard C library. This representation is a (classless) array with
the following fields:

37

year
The year number. This should be an integer holding the year.15

month
The month, represented as an integer number in the range [1..12] (January is represented by the
number 1, December is represented by the number 12). The number 0 represents an undefined
month.

week
The calendar week. The first calendar week (week number 1) is the week containing the 4th of
January of the specified year.16 The number 0 represents an undefined week.

yday
The day of the year. The 1st of January is day 1. The number 0 represents an undefined day of the
year.

mday
The day of the month, represented an integer in the range [1..31]. The number 0 represents an
undefined day of the month.

wday
The day of the week, represented as an integer in the range [1..7]. Monday is day 1 and Sunday is
day 7.17 The number 0 represents an undefined day of the week.

hour
The hour of the day. This is an integer in the range [0..24].18

min
The minute of the hour. This is an integer in the range [0..59].

sec
The second of the minute. This is an integer in the range [0..60].19

msec
The millisecond of the second. This is an integer in the range[0..999].

tz
The local timezone represented as a difference to UTC, specified in hours. The valueNIL represents
local time.

tzmin
The local timezone represented as an additional offset to UTC, specified in minutes. This is an
integer in the range [0..59].20

Note that representations of week dates and calendar/ordinal dates are not compatible. The days 1st of
January through 3rd of January may belong to the last calendar week of the previous year, so the week
date and the calendar date representation of the day may disagree on the year number. Hence, a time array
may either represent a calendar/ordinal date or a week date.If the fieldweek is defined (non zero), then
the fieldsmonth, mday, andyday mustbe set to undefined (value 0).

The following methods are provided by thetime class environment:

15Note that in contrast tostruct tm of the standard C library, the specified number isnot interpreted relative to 1900.
16A week starts with Monday and ends with Sunday.
17Note that in contrast tostruct tm of the standard C library, the value 0 isnotan alternate representation for Sunday.
18hour=24, min=0, sec=0, msec=0 is a valid encoding for midnight.
19The valuesec=60 is required to encode leap seconds.
20The ISO 8601:2000 standard allow timezone offsets with minute accuracy.

38

create(tm)
This method discards the called object (typically{time}nil) and interprets the parametertm as a
time array. The time array specified through thetm parameter should hold a combination of
elements uniquely specifying a point in time. If any of the fieldshour, min, sec, msec, tz, or
tzmin are missing, they are considered to have the integer value0. Of the other fields, one of the
following combinations must be present:

• year, month, mday (calendar date representation).

• year, yday (ordinal date representation).

• year, week, wday (week date representation).

The fields are checked in the order listed above. If unneeded fields are specified, these fields are
ignored. For example, if theyear, yday, wday, andweek fields are present, thewday andweek
fields are ignored, since the ordinal representation takes precedence over the week date
representation.

The method returns a time object in epoch representation.

split(tz = NIL, weekdate= FALSE)
Split a time object to array representation. The parametertz is a time array containing the requested
time zone (tz and/ortzmin fields). If the parametertz is NIL , local time is assumed.

The parameterweekdateis interpreted as a truth value (as defined in appendix B). Ifweekdateis
TRUE, the date is decoded to a week date; ifweekdateis FALSE, the date is decoded to a
calendar/ordinal date. The fieldwday is set independed from theweekdateparameter.

The function returns a complete classless time array as defined above.

encode(tz = NIL)
Encode a time object using the ISO representation. The parametertz is a time array containing the
requested time zone (tz and/ortzmin fields). If the parametertz is NIL , local time is assumed.

decode()
Decode a time object from ISO representation to epoch representation.

C.2.4 Time Expression Evaluation

Expressions including time objects can be used to perform simple arithmetic on time objects (addition and
subtraction of deltas, computation of time deltas, orderedand equality comparisons of time objects).
Whenever a time delta is computed, it is specified as a floatingpoint number of classtime delta.

For time arithmetic, a time delta may be specified as a number (measured in seconds) or a string. If a delta
is specified as a floating point number, the number is rounded to millisecond precision. If the delta is
specified as a string, it is interpreted as follows:

1. A delta specification is a (possibly empty) list of time delta elements, separated by whitespace
and/or commas.

2. A time delta elements is an integer number followed by an optional unit specifier. The integer
number may be written in decimal (starting with a non-zero digit), octal (starting with a zero digit),
or hex (starting with the character sequence0x or 0X).

Unit specifiers are case-insensitive, i.e. “s” is equivalent to “S”. The following unit specifiers are
recogized:

ms The delta is specified in milliseconds.

s The delta is specified in seconds.

39

m The delta is specified in minutes.

h The delta is specified in hours.

d The delta is specified in days.

If a delta element does not contain a unit specifier, seconds are assumed.

The following expression types are recogized by the time evaluation:

EXPR_PLUS (Time and delta addition)
The evaluated second operand is interpreted as a time delta specification, either as a number or as a
string. The result is a time object representing the result of the time plus delta addition. If the delta
is specified as a number, it may be negative. If the second operand is not a number or string holding
a valid time delta specification, the expression is not evaluated.

EXPR_MINUS (Time and delta subtraction, time delta)
If the evaluated second operand is a number or string not of classtime, the result is a time object
representing the result of the time minus delta subtraction. If the second operand is of classtime,
the difference between the two time objects is computed an returned as a floating point number of
classtime delta (measured in seconds, up to a precision of milliseconds).

EXPR_LS (Time comparison earlier-than)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “earlier-than” comparison.

EXPR_LE (Time comparison earlier-or-equal)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “earlier-or-equal” comparison.

EXPR_GT (Time comparison later-than)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “later-than” comparison.

EXPR_GE (Time comparison later-or-equal)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “later-or-equal” comparison.

EXPR_EQ (Time comparison equal)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “equal” comparison.

EXPR_NE (Time comparison not-equal)
If both operands are of typetime, the expression is evaluated to a boolean representin the result of
an “not-equal” comparison.

Note that both operands are evaluated for all operations ontime objects.

40

D Simple Objects API

This section defines a language neutral inteface for simple object APIs. The APIs are defined in a syntax
simple to that of theJavaprogramming language. The API consits of two parts, a set of
functions/methods operating on simple object serializations and a set of methods operating on instances of
a simple object class, holding an in-memory representationof a simple object. Instances of such a simple
object class are calledruntime objects.

A programming library typically provides a set of hooks for callback functions/methods. These callback
hooks should not be held in a global and static location. Instead, objects instanciated from an environment
class should be used to hold all these callbacks. Such objects are calledenvironment objects.

Every runtime object should reference such an environment object. All methods operating on runtime
objects and accessing the environment should be provided intwo variants: one using the environment
object referenced by the runtime object and one using an environment object specified by the caller. In
languages supporting default values for method parameters, these two variants may be implemented using
a defaulted parameter.

D.1 The Environment Class

Theenvironment classis the base class for environment objects. In an object-oriented environment, the
environment object would be an instance of a class derived from the environment class. The environment
class provided by the simple objects library would provide default implementations of the callbacks
methods.

The environment class provided by the API should be equivalent to the following classEnv:

class Env
{
static final int MSG_ERR = 1;
static final int MSG_WARN = 2;
static final int MSG_INFO = 3;
static final int MSG_DEBUG = 4;

bool error;

int message(int msgType, string msgID,
Dictionary msgArgs, string message) { return -1; }

string str(SObject object) { return null; }

SObject vref(string ref) { return null; }

string vref_str(string ref) {
SObject object = vref(ref);
if (object != null) return str(object); else return null;

}

Dictionary classEnv;

// ...

final void add_class(ClassEnv classEnv);
final ClassEnv find_class(string name);

};

The methods implemented in the actual environment class derived fromEnv should implement the
following functionality:

41

int message(int msgType, string msgID, Dictionary msgArgs, string message)
Process a message of the specified typemsgType. The message should be sent to a logging facility
and/or terminal.
Parameters:

int msgType
The message type. This is one of the following constants:

MSG_ERR
An error message. An operation failed due to an error condition.

MSG_WARN
A warning message.

MSG_INFO
An informational message. Info messages may be discarded ina production environment.

MSG_DEBUG
A debugging message. Debug messages should be discarded in aproduction environment.

string msgID
A message identification string. A list of message identification strings is given in section D.5.
Message IDs are language neutral and may be used for internationalization.

Dictionary msgArgs
A set of key/value pairs holding additional information about the event. The keys are all plain
ASCII strings and the values are serializations of simple objects.

string message
A short message text in English. This message text should contain all relevant information
about the event.

The return value indicates if a default message processing should be performed. The default
message processing will write error (MSG_ERR) and warning (MSG_WARN) messages to the
standard error of the process and discard all other messages.
Return values:

-1
Perform a default messages processing.

0
Message processed, OK. (No default processing is performed.)

All other return values are reserved and should not be returned by the implementation of
message().

string str(SObjectobject)
Create a UNICODE UTF-8 string representation of a runtime object (the returned string shouldnot
be an extended UNICODE string). The return valuenull indicates, that a default string
representation should be used.

SObjectvref(string ref)
Resolve a variable reference. The parameterref specifies the reference string. The return value
null indicates that the variable reference should not be substituted, i.e. the variable reference is
kept unchanged.

string vref_str(string ref)
Resolve a variable reference in an UTF-8 encoded UNICODE string (notan extended string). The
method implementations defaults to a combination of thevref() andstr() methods.

The following fields are defined in the environment class:

42

MSG_ERR, MSG_WARN, MSG_INFO, MSG_DEBUG
Constants for themsgTypeparameter of themessage() method (see above).

bool error
This flag is set when themessage() method is called with themsgTypeset toMSG_ERR.

Dictionary classEnv
If not null, theclassEnvdictionary holds a set of class environment objects (see section D.2). The
dictionary maps the class names (classfield of a simple object) to an instance of a class derived
fromClassEnv.

Note: This field should be treated as a read-only instance variable, even if a specific implementation
allows modifications toclassEnv.

The class environments of an environment object are managedusing the following methods. These
methods are provided by the simple object implementation and must not be overridden in derived classes.

void add_class(ClassEnvclassEnv)
Add a class environment to an environment object. If the class name of the specified class
environment is not set or empty, the specified class environment is installed as the default class
environment.

ClassEnvclassEnv
The class environment to be added to the environment object.

ClassEnvfind_class(String name)
Find the class environment associated with the specified class name. If no class environment with
the specified name is found and if a default class environmentis installed, the default class
environment is returned. The method returnsnull if the name is not bound and no default class
environment is installed.

String name
The class name of the requested class environment.

In a programming environment not supporting classes and inheritance, the environment objects should be
implemented as a collection of function objects (e.g. function pointers in C) with a defined null-value
indicating the default behaviour.

D.2 The Class Environment Class

Theclass environment classis the base class for objects defining simple object classes.These instances
are referenced by theclassEnvfield of an environment object.

The class environment class provided by a simple objects APIshould be equivalent to the following class:

class ClassEnv
{
string name;

SObject pack(SObject object, Env env = null) { return object; }

SObject unpack(SObject object, Env env = null) { return object; }

SObject call(SObject object, SObject method,
SObject args, Env env = null) { return SObject.NIL(); }

SObject eval(SObject expression) { return null; }
};

43

The field namednameholds the name of the class, ornull if the class environment applies to all objects
without a matching class environment. The methods implemented in the actual environment class derived
fromClassEnv should implement the following functionality:

SObjectpack(SObjectobject, Env env = null)
This method is called before the object is serialized.
Parameters:

SObjectobject
The simple object being serialized.

Env env(default valuenull)
The environment object for the operation. This environmentobject should be passed to all
operations performed on the object. A null-pointer (valuenull) indicates that the default
environment should be used.

The return value is the object transformed for serialization. If no transformation is required, the
function should return the objectobject(this is the default behaviour for all objects).

SObjectunpack(SObjectobject, Env env = null)
This method is called after the object is deserialized.
Parameters:

SObjectobject
The simple object being deserialized.

Env env(default valuenull)
The environment object for the operation. This environmentobject should be passed to all
operations performed on the object. A null-pointer (valuenull) indicates that the default
environment should be used.

The return value is the object transformed after deserialization. If no transformation is required, the
function should return the objectobject(this is the default behaviour for all objects).

SObjectcall(SObjectobject, string method, SObjectargs, Env env = null)
This method implements method calls on simple objects of thedefined simple object class.
Parameters:

SObjectobject
The simple object instance the method is called on.

SObjectmethod
The method identifier.

SObjectargs
The arguments passed to the method call. A null-pointer indicates that the method was called
without arguments. Ifargs is not a null-pointer, it is always of typearray.

Env env(default valuenull)
The environment object for the operation. This environmentobject should be passed to all
operations performed on the object. A null-pointer (valuenull) indicates that the default
environment should be used.

If the method call succeeds, the method should return a simple object representing the return value
of the method call. If the method call failed, the method callshould return a null-pointer.

If a null-pointer is returned (error indication), theerror flag of the corresponding environment
object is set. The method is responsible for propper error reporting (e.g. by calling themessage()
method from the environment object).

44

SObjecteval(SObjectexpression, Env env = null)
This method implements the expression evaluation functionfor the object class.
Parameters:

SObjectexpression
The expression object to be evaluated. This is always an object of typeexpr. The first
operand of the expression is the evaluated operand of the original expression.21

Env env(default valuenull)
The environment object for the operation. This environmentobject should be passed to all
operations performed on the object. A null-pointer indicates that the default environment
should be used.

The method should return the evaluated object. If the expression can not and should not be
evaluated, the method should return the parameterexpressionas is.

If the method returnsnull, an evaluation is performed on all subexpressions.

Note: Theeval() method of the class environment is responsible for performing recursive
evaluation of subexpressions22.

D.2.1 The Default Class Environment

A class environment object without a class name (i.e. thenamefield isnull) is called thedefault class
environment. If a default class environment is present, it is used as the class environment for all classes
without a matching class environment.

Note: For objects without an associated class name, the default class environment is used when present in
the environment object.

D.3 Runtime Objects

Runtime objects are represented by instances of the API classSObject. Instances of the runtime object
classSObject are immutable. That means, that the value of a simple object never changes after the
object is created. The API should be designed in a way that avoids the creation of unnecesseary temporary
objects.

D.3.1 Factories

Objects of all types may be created using the following static factory methods:

class SObject
{
// ...
static final int EXPR_POS = 1;
static final int EXPR_NEG = 2;
static final int EXPR_NOT = 3;
static final int EXPR_PLUS = 4;
static final int EXPR_MINUS = 5;
static final int EXPR_MUL = 6;
static final int EXPR_DIV = 7;
static final int EXPR_MOD = 8;
static final int EXPR_CAT = 9;
static final int EXPR_LS = 10;
static final int EXPR_LE = 12;

21The simple objects library needs to evaluate the first operand anyway to dispatch the evaluation to the correct class environment.
22This enables theeval() method to perform conditional evaluation of subexpressions.

45

static final int EXPR_GT = 14;
static final int EXPR_GE = 16;
static final int EXPR_EQ = 18;
static final int EXPR_EQ_APPROX = 19;
static final int EXPR_NE = 20;
static final int EXPR_NE_APPROX = 21;
static final int EXPR_AND = 22;
static final int EXPR_OR = 23;
static final int EXPR_COND = 24;
static final int EXPR_SEQ = 25;
static final int EXPR_SEL = 26;
static final int EXPR_INDEX = 27;
static final int EXPR_CALL = 28;
// ...
static SObject NIL(string cn = null);
static SObject BOOL(bool value, string cn = null);
static SObject INT(long value, string cn = null);
static SObject FLOAT(double value, string cn = null);
static SObject STRING(string value, string cn = null);
static SObject STRING_raw(string value, string cn = null);
static SObject STRING_ucx(byte[] value, string cn = null);
static SObject BINARY(SObject id, byte[] body, string cn = null);
static SObject ARRAY(SObject[] key, SObject[] value, string cn = null);
static SObject VREF(string ref, string cn = null);
static SObject VREF_raw(string ref, string cn = null);
static SObject VREF_ucx(byte[] ref, string cn = null);
static SObject EXPR(int opType, SObject op1,

SObject op2 = null, SObject op3 = null,
string cn = null);

// ...
};

staticSObjectNIL(string cn = null)
Create a runtime object representing aNIL object (a simple object of typenil).
Parameters:

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectBOOL(bool value, string cn = null)
Create a runtime object representing a simple object of typebool.
Parameters:

bool value
The value.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObject INT(long value, string cn = null)
Create a runtime object representing a simple object of typeint.
Parameters:

long value
The numeric value.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

46

staticSObjectFLOAT(doublevalue, string cn = null)
Create a runtime object representing a simple object of typefloat.
Parameters:

double value
The numeric value.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectSTRING(string value, string cn = null, Env env = null)
Create a runtime object representing a simple object of typestring.
Parameters:

string value
The string value. The value is interpreted as a text serialization instring context.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

Env env(default valuenull)
The environment object. The special valuenull represents the default environment.

staticSObjectSTRING_raw(string value, string cn = null)
Create a runtime object representing a simple object of typestring.
Parameters:

string value
The string value. The value is interpreted as a UNICODE string.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

Note: String objects created with this factory can not contain variable references.

staticSObjectSTRING_ucx(byte[] value, string cn = null)
Create a runtime object representing a simple object of typestring.
Parameters:

byte[] value
An extended string value. The value is interpreted as an extended UNICODE string as defined
in section 2.3 on page 7. If the specified string is not a valid extended UNICODE string, it is
interpreted as a regular UNICODE string.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectBINARY(SObject id, byte[] body, string cn = null)
Create a runtime object representing a simple object of typearray. Parameters:

SObject id
The type ID object of the binary object (theid field of the simple objectdata).

byte[] body
Thebodyfield of the simple objectdata. The valuenull is equivalent to an empty body.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectARRAY(SObject[] key, SObject[] value, string cn = null)
Create a runtime object representing a simple object of typearray. The array object created will
be empty (i.e. not contain any array elements).
Parameters:

47

SObject[] key
The array of element keys. The special valuenull indicates that all keys areNIL .

SObject[] value
The array of values. The special valuesnull indicates that am empty array should be created.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

The length of the resulting array dependsonlyon thevalueparameter. If thekeyarray is shorter
than thevaluearray, the extra elements in thevaluearray are associated with aNIL key. If thekey
array is longer than thevaluearray, the extra elements in thekeyarray are ignored.

staticSObjectVREF(string ref, string cn = null)
Create a runtime object representing a simple object of typevref.
Parameters:

string ref
The reference string of the variable reference. The specified string is converted to UTF8 and
interpreted as a text serialization instring context. The represented string is taken as the
reference string of the new object.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectVREF_raw(string ref, string cn = null)
Create a runtime object representing a simple object of typevref.
Parameters:

string ref
The reference string of the variable reference. The specified string is interpreted as a raw
UNICODE string (i.e. not containing nested variable references).

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectVREF_ucx(byte[] ref, string cn = null)
Create a runtime object representing a simple object of typevref.
Parameters:

byte[] ref
The reference string of the variable reference. The specified string is interpreted as an
extended UNICODE string as defined in section 2.3 on page 7. Ifthe specified string is not a
valid extended UNICODE string, it is interpreted as a regular UNICODE string.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

staticSObjectEXPR(int opType, SObjectop1, SObjectop2 = null, SObjectop3 = null,
string cn = null)

Create a runtime object representing a simple object of typeexpr.
Parameters:

int opType
The expression type. The constants representing expression types are summarized in table 2.

SObjectop1
The first operand of the expression.

SObjectop2(default valuenull)
The second operand of the expression. If the expression typerequires only one operand, this
parametermustbenull.

48

Constant Operands Expression Type

EXPR_POS 1 Unary positive operator

EXPR_NEG 1 Unary negation operator

EXPR_NOT 1 Unary logical negation operator (NOT)

EXPR_PLUS 2 Binary plus operator

EXPR_MINUS 2 Binary minus operator

EXPR_MUL 2 Multiplication operator

EXPR_DIV 2 Division operator

EXPR_MOD 2 Modulo operator

EXPR_CAT 2 Concatenation operator

EXPR_LS 2 Less-than comparison operator

EXPR_LE 2 Less-or-equal comparison operator

EXPR_GT 2 Greater-than comparison operator

EXPR_GE 2 Greater-or-equal comparison operator

EXPR_EQ 2 Equals comparison operator

EXPR_EQ_APPROX 3 Equals approximate comparison operator

EXPR_NE 2 Not-equal comparison operator

EXPR_NE_APPROX 3 Not-equal approximate comparison operator

EXPR_AND 2 Logical AND operator

EXPR_OR 2 Logical OR operator

EXPR_COND 3 Conditional operator

EXPR_SEQ 2 Sequence operator

EXPR_SEL 2 Selection operator

EXPR_INDEX 2 Index operator

EXPR_CALL 2 Call operator

Table 2: Expression Type Constants in ClassSObject

SObjectop3(default valuenull)
The third operand of the expression. If the expression type requires only one or two operands,
this parametermustbenull.

string cn (default valuenull)
If not null, the parametercnspecifies the class name of the new object.

D.3.2 Object Modification

All so calledobject modificationmethods are in fact factories, since instances ofSObject are
immutable. E.g. removing an element from an array creates a new simple object representing a flat copy
of the original array with the specified element removed.

Note: The objects created by the object modification methods belowpreserve the class name of the called
object.

The following object modification methods are provided by theSObject class:

class SObject
{
// ...
SObject set_classname(string cn);

49

SObject insert(int position, SObject key, SObject value);
SObject insert(int position, SObject[] key, SObject[] value);
SObject append(SObject key, SObject value);
SObject append(SObject[] key, SObject[] value);
SObject remove(int position, int count = 1);
SObject remove(SObject key);
SObject replace(int position, SObject key, SObject value);
SObject put(SObject key, SObject value, Env env = null);
SObject concat(SObject operand);

SObject set(string address, SObject value,
bool slice = false, Env env = null);

SObject set(SObject address, SObject value,
bool slice = false, Env env = null);

SObject string_insert(int position, string str);
SObject string_append(string str);
SObject string_replace(int position, int length, string str);
// ...

};

SObjectset_classname(string cn)
Change the class name of an object. Parameters:

string cn
The class name of the new object. If this isnull, no class name will be associated with the
new object.

An object identical to the called object except for the classname. The class name is substituted with
the specified class namecn.

SObject insert(int position, SObjectkey, SObjectvalue)
Insert an element (i.e. key/value pair) into an array object. It is a fatal runtime error if the called
object is not of typearray.
Parameters:

int position
The index position for inserting the element. Negative values are counted from the end if the
array. If indexis equal to the length of the array, the element is appended tothe array. It is a
fatal runtime error if the index is out of bounds.

SObjectkey
The key of the key/value pair. The valuenull is equivalent to aNIL object.

SObjectvalue
The value of the key/value pair. The valuenull is equivalent to aNIL object.

The method returns an array object with the specified elementinserted.

SObject insert(int position, SObject[] key, SObject[] value)
Insert a sequence of elements (key/value pairs) into an array object. It is a fatal runtime error if the
called object is not of typearray.
Parameters:

int position
The index position for inserting the sequence of elements. If positionis equal to the length of
the array, the elements are appended to the array. It is a fatal runtime error if the index is out of
bounds.

50

SObject[] key
Array of element keys. The special valuenull indicates that all element keys areNIL .

SObject[] value
Array of values. The length of the arrayvalueindicates the number of elements being
inserted. If thevaluearray is longer than thekeyarray, the unspecified keys are set toNIL . If
thevaluearray is shorter than thekeyarray, the extra key values inkeyare ignored.

If the specified element sequence is empty, the called objectremains unchanged. The method
returns an array object with the specified elements inserted.

SObjectappend(SObjectkey, SObjectvalue)
Append an element (i.e. key/value pair) to an array object. It is a fatal runtime error if the called
object is not of typearray.
Parameters:

SObjectkey
The key of the key/value pair. The valuenull is equivalent to aNIL object.

SObjectvalue
The value of the key/value pair. The valuenull is equivalent to aNIL object.

The method returns an array object with the specified elementappended.

SObjectappend(SObject[] key, SObject[] value)
Append a sequence of elements (key/value pairs) to an array object. It is a fatal runtime error if the
called object is not of typearray.
Parameters:

SObject[] key
Array of element keys. The special valuenull indicates that all element keys areNIL .

SObject[] value
Array of values. The length of the arrayvalueindicates the number of elements being
appended. If thevaluearray is longer than thekeyarray, the unspecified keys are set toNIL . If
thevaluearray is shorter than thekeyarray, the extra key values inkeyare ignored.

If the specified element sequence is empty, the called objectremains unchanged. The method
returns an array object with the specified elements appended.

SObject remove(int position, int count = 1)
Remove a number of elements from an array object. It is a fatalruntime error if the called object is
not of typearray.
Parameters:

int position
The inserted position of the first element being removed. Negative values are counted from the
end of the array. It is a fatal runtime error if the index is outof bounds.

int count(default value1)
The number of elements being removed. This value must be positive or zero. Ifcountis zero,
the array object remains unchanged.

The method returns an array object with the specified elements removed.

SObject remove(SObjectkey, Env env = null)
Remove the last element whose key matches the specifiedkey. It is a fatal runtime error if the
specified object is not of typearray.
Parameters:

51

SObjectkey
The specified element key.

Env env(default valuenull)
The environment object used for resolving variable references in the element keys of type
string. If this isnull, the default environment is used.

The array object remains unchanged if the specified key is notfound. The method returns an array
object with the specified element removed.

Note: Only the last element with a matching key is removed. The array might contain multiple
elements with a matching key.

SObject replace(int position, SObjectkey, SObjectvalue)
Replace an element in an array object. It is a fatal error if the called object is not of typearray.
Parameters:

int position
The index position of the element being replaced. Negative values are counted from the end of
the array. It is a fatal runtime error if the index is out of bounds.

SObjectkey
The replacement key of the specified element. The special valuenull indicates that the key
should remain unchanged.

SObjectvalue
The replacement value of the specified element. The special valuenull indicates that the
value should remain unchanged.

The method returns an array object with the specified elementaltered.

Note: The special valuenull doesnot represent aNIL value.

SObjectput(SObjectkey, SObjectvalue, Env env = null)
Alter or add an element in/to an array object. It is a fatal error if the called object is not of type
array.
Parameters:

SObjectkey
The key of the array element that should be altered. The last element in the array with a
matching key is altered. If the specified key is not found in the array, the specified key/value
pair is appended to the array.

SObjectvalue
The value of the specified element. The special valuenull indicates aNIL value.

Env env(default valuenull)
The environment object used for resolving variable references in the address and in element
keys of typestring. If this isnull, the default environment is used.

The method returns an array object with the specified elementaltered or added.

SObjectconcat(SObjectoperand)
Append an array object to an array object or a string object toa string object. It is a fatal runtime
error if the called object is not if typearray or typestring.
Parameters:

SObjectoperand
The array object being appended. It is a fatal runtime error if the parameteroperandis not of
the same type as the called object (eitherarray orstring).

The method returns the concatenation of the called object and the operand.

52

Theset() methods below replace a subobject of a specified simple object with another object. The
position of the subobject is specified as an address (see section 5 on page 23 for a description of
addresses). The address with the last operation stripped iscalled thepathand the last operation is called
theselection.

The path is resolved usingpure address resolution(see section 5.2). Cases where thepathcan not be
resolved are handled using the following set of rules:

1. If an index or selection operation is applied to aNIL object, that object is transparently replaced by
an empty array object.

2. If a selection operation references an undefined key, thatkey is appended to the array and associated
with the valueNIL .

3. A slice operation selecting an empty slice from an array causes the key/value pairNIL /NIL to be
inserted at the position of thelower boundof the slice. If thelower boundis equal to the length of
the array, theNIL /NIL element is appended to the array. The selected object is the
inserted/appended element.

If path can’t be resolved directly or by using the rules above, theset() methods below will returnnull.

The selection is used to identity the subobject that should be replaced. For this operation, array indices
and slices are handled in a special way: If thesliceflag (passed to all variants of theset() method) is
clear, the selected element or slice is replaced by a single element consiting of the keyNIL and the
specified value. If thesliceflag is set, the selected element or slice is replaced by a sequence of elements
specified as an object of typearray. In this case the specialvaluenull is interpreted as an empty array
(causing the selected element or slice to be removed).

If an array object is created transparently in the process ofaddress resolution, these objects willnotbe
associated with a class name.

SObjectset(string address, SObjectvalue, bool slice = false, Env env = null)
Substitute a subobject at the specified address.

string address
The parameterstring is encoded as an UTF-8 byte array and interpreted as a text serialization
of a simple object. If the first non-whitespace character instring is a dot (.) or an opening
bracket ([), the string"NIL" (without the quotes) is prepended to the parameter. The
represented simple object is interpreted as an address selecting the object to be substituted.

SObjectvalue
The value to be substituted in place of the selected subobject.

bool slice(default valuefalse)
Flag indicating if an element or slice addressed by an index or slice selection should be
replaced by a single value or a sequence of elements (see above).

Env env(default valuenull)
The environment object used for resolving variable references in the address and in element
keys of typestring. The special valuenull causes the default environment to be used.

If the address can’t be resolved, the function returnsnull. On succeeds, an object with the
specified subobject replaced is returned.

SObjectset(SObjectaddress, SObjectvalue, bool slice = false, Env env = null)
Substitute a subobject at the specified address.

SObjectaddress
The address selecting the simple object to be substituted.

53

SObjectvalue
The value to be substituted in place of the selected subobject.

bool slice(default valuefalse)
Flag indicating if an element or slice addressed by an index or slice selection should be
replaced by a single value or a sequence of elements (see above).

Env env(default valuenull)
The environment object used for resolving variable references in the address and in element
keys of typestring. The special valuenull causes the default environment to be used.

If the address can’t be resolved, the function returnsnull. On succeeds, an object with the
specified subobject replaced is returned.

The following string manipulation methods operate on simple objects of typestring. The language
typestring should be a string type capable of storing UNICODE strings. Whenever a position with in
string is specified through apositionparameter, the parameter indicates the index position of a UNICODE
character. Note that some characters may be represented by asequence of UNICODE characters (e.g.
accented characters), so the indicated position depends onhow such characters are represented. See
section 5.4 on page 27 for details about string normalization.

String objects represented as simple object instances areextended UNICODE strings(see section 2.3 on
page 7). An extended strings may contain variable references. The string manipulation methods below
treat variable references like a single UNICODE character.

SObjectstring_insert(int position, string str)
Insert a string into a string object. It is a fatal runtime error if the called object is not of type
string.
Parameters:

int position
The character position for inserting the specified string. If the position is-1 or points beyond
the end of the string, the specified stringstr is appended to the called object. It is a fatal
runtime error to pass a negative value smaller than-1.

string str
The string to be inserted.

The method returns a string object with the specified string inserted at the specified position.

SObjectstring_append(string str)
Append a string to the end of a string object. It is a fatal runtime error if the specified object is not
of typestring.
Parameters:

string str
The string to be appended.

The method returns a string object with the specified string appended.

SObjectstring_replace(int position, int length, string str)
Replace a substring of the specified string object. It is a fatal runtime error of the specified object is
not of typestring.
Parameters:

int position
The character position for replacing the specified string. If the position is-1 or points beyond
the end of the string, the specified stringstr is appended to the called object.

54

int length
The length of the substring to be replaced. Forlength== 0 this is equivalent to the
string_insert()method. Iflengthis larger than the rest of the string or-1, the entire
rest of the string is replaced. It is a fatal runtime error to pass a negative value smaller than-1.

string str
The replacement string.

The method returns a string object with the specified substring replaced.

D.3.3 Subobject Access

Subobjects of a simple object may be accessed as instances ofthe classSObject. The following
subobject access methods are defined for theSObject class:

class SObject
{
// ...
SObject index(int index);
SObject slice(int start, int end);
SObject select(SObject key, Env env = null);
SObject lookup(SObject key, Env env = null);
SObject call(SObject args, Env env = null);

int index_of(SObject key, Env env = null);

SObject get(string address, bool pure = false, Env env = null);
SObject get(SObject address, bool pure = false, Env env = null);

string substring(int position, int length, Env env = null);
// ...

};

SObject index(int index)
Perform anindex operationas described in section 5.1.1, page 23. The called object hasto be a
valid sequenceobject for the operation. For an index operation, this is oneof array, string,
expr. If the called object is not a valid sequence, a classless index expression is created where the
first operand is the called object and the second operand (theindex array) holds a single integer
object (typeint) representing the value of the parameterindex.

int index
The indexin the index operation.

The method returns the result of the index operation.23

SObjectslice(int start, int end)
Perform aslice operationas described in section 5.1.1, page 23. The called object hasto be a valid
sequenceobject for the operation. For a slice operation, this is eitherarray or string. If the
called object is not a valid sequence, a classless index expression is created where the first operand
is the called object and the second operand (the index array)holds two integer objects (typeint)
representing the value of the parametersstart andend.

int start
The (inclusive)lower boundof the slice operation.

int end
The (exclusive)upper boundof the slice operation.

23The result of the index operation will beNIL if the index is out of bounds.

55

The method returns the result of the slice operation.

SObjectselect(SObjectkey, Env env = null)
Perform aselection operationas described in section 5.1.1, page 23. The called object is the
dictionaryof the operation and has to be of typearray. If the dictionary is not of typearray or
the dictionary does not contain the specified key, the objectreturned is a (classless) selection
expression where the first operand is the called object and the second operand is the selector.

SObjectkey
Theselectorof the selection operation.

Env env(default valuenull)
The environment object used for comparison of the keys with the specified selector. The
special valuenull represents the default environment.

The method returns the result of the selection operation.

SObject lookup(SObjectkey, Env env = null)
Perform a dictionary lookup operation. It is a fatal runtimeerror of the called object is not of type
array.

SObjectkey
The key of the desired element.

Env env(default valuenull)
The environment object used for comparison of the keys with the specified selector. The
special valuenull represents the default environment.

The method returns the value bound to the specified key ornull if the specified key is not bound.

SObjectcall(SObjectargs, Env env = null)
Perform a method call operation on the called object. The called object should be a selection
expression. The selector of that expression (the second operand) is interpreted as a method selector.
If a class environment object (see section D.2 on page 43) is associated with the first operand of the
called expression object, thecall method of the class environment is called.

Note: It is a fatal runtime error if the parameterargs is not of typearray.

SObjectargs
The arguments operand of the call. This is an object of typearray holding the call
arguments (positional or named or both). It is a fatal runtime error if the value ofargs is not of
typearray.

Env env(default valuenull)
The environment object passed the tocall method of the class environment. The special
valuenull represents the default environment.

If the call operation is handled by thecall method of a class environment, the return value of that
call is passed on to the caller. If no class environment is associated with the called object or the
called‘ object is not a selection expression, the return value is a call expression object where the first
operand is the called object an the second operand is the value of theargsparameter.

int index_of(SObjectkey, Env env = null)
Return the index of the element associated with the specifiedkey. It is a fatal runtime error if the
called object is not of typearray.

SObjectkey
The key to look for.

Env env(default valuenull)
The environment object used for comparing the keys. The valuenull represents the default
environment.

56

The method returns the index of thelast element in the array matching the specified key or-1 if the
specified key was not found.

The followingget() methods use addresses to select a subobject from a simple object. Addresses and
the address resolution process is defined in section 5 (page 23). Theget() methods offer an optional
pureflag indicatingpure address resolution. Pure addresses and the pure address resolution process are
defined in section 5.2 (page 26).

If the address objects passed to theget() methods contains method calls and if thepureflag is clear, the
method call subexpressions are substituted using thecall method of the called object.

SObjectget(string address, bool pure = false, Env env = null)
Get a subobject of the called object.

string address
The address of the subobject. The stringaddressis converted to UTF-8 and interpreted as a
text serialization of a binary object (see section 3.1). If the first non-whitespace character of
addressis a dot (.) or opening bracket ([), the string “NIL” is prepended to the address.

bool pure(default valuefalse)
Flag indicating that pure address resolution should be used.

Env env(default valuenull)
The environment object used. The valuenull represents the default environment.

The method returns the specified subobject. The function returnsnull if the pureflag was selected
an the address does not resolve to a subobject of the called object.

SObjectget(SObjectaddress, bool pure = false, Env env = null)
Get a subobject of the called object.

SObjectaddress
The address of the subobject.

bool pure(default valuefalse)
Flag indicating that pure address resolution should be used.

Env env(default valuenull)
The environment object used. The valuenull represents the default environment.

The method returns the specified subobject. The function returnsnull if the pureflag was selected
an the address does not resolve to a subobject of the called object.

The following string selection methods operate on simple objects of typestring. The language type
string should be a string type capable of storing UNICODE strings. Whenever a position with in string is
specified through apositionparameter, the parameter indicates the index position of a UNICODE
character. Note that some characters may be represented by asequence of UNICODE characters (e.g.
accented characters), so the indicated position depends onhow such characters are represented. See
section 5.4 on page 27 for details about string normalization.

string substring(int position, int length, Env env = null)
Get a substring from the called object. The called object hasto be of typestring. It is a fatal
runtime error if the called object in not of typestring.

int position
The position of the first character of the substring. Negative values are counted from the end
of the string (e.g. the value-1 selects the last character of the string. It is a fatal runtime error
if the position is out of bounds.

57

int length
The length of the selected substring (number of UNICODE characters). If the value is-1 or
larger that the number of UNICODE characters following the specified position, the entire rest
of the string is selected. Values smaller than-1 cause a fatal runtime error.

Env env(default valuenull)
The environment object used for resolving variable references in the string. The valuenull
represents the default environment.

The method returns the selected substring.

D.3.4 Object Evaluation

class SObject
{
// ...
static final int TYPE_NIL = 0;
static final int TYPE_BOOL = 1;
static final int TYPE_INT = 2;
static final int TYPE_FLOAT = 3;
static final int TYPE_STRING = 4;
static final int TYPE_BINARY = 5;
static final int TYPE_ARRAY = 6;
static final int TYPE_EXPR = 7;
static final int TYPE_VREF = 8;
// ...
int type(void);
string classname(void);
bool to_bool(void);
int to_int(void);
double to_double(void);
string to_string(void);

string str(Env env = null);

SObject binary_type_id(void);
byte[] binary_data(void);
int array_count(void);
SObject[] array_values(void);
SObject[] array_keys(void);
string vref_ref(void);
int expr_type(void);
SObject[] expr_op(void);

SObject eval(Env env = null);
SObject resolve(bool recursive = true, Env env = null);
int compare(SObject operand, Env env = null);
// ...

};

int type(void)
Return the object type. This is one of the constantsTYPE_NIL (NIL object, typenil),
TYPE_BOOL (typebool), TYPE_INT (typeint), TYPE_FLOAT (typefloat),
TYPE_STRING (typestring), TYPE_BINARY (typebinary), TYPE_ARRAY (typearray),
TYPE_EXPR (typeexpr), TYPE_VREF (typevref).

string classname(void)
Return the class name. If the object is not associated with a type,null is returned.

58

The following set of methods converts simple object to native values of the programming environment.
All method names are of the formto_typename, wheretypenameis the name of a native type. As a
consequence, the method names of these conversion functions depend on the programming environment.
It is possible to have multiple conversion methods for the same simple object type, e.g. in C there might
be conversion methods namedto_int, to_long, andto_long_long.

The methods will perform implicit type conversion using thefollowing rules:

1. Objects of typenil are converted to typebool, valueFALSE, the integer or floating point value 0
(int or float), or to an empty string (typestring).

2. Objects of typebool are converted to typeint, float, or to typestring. FALSE maps to 0
(int or float) or “false” (string), TRUE maps to 1 (int or float) or “true” (string).

3. Objects of typeint are converted to typefloat or typestring. If the object is converted to
typefloat, the numerical value is retained as accurately as possible.If the object is converted to
string, the shortest decimal representation using ASCII digits isgenerated.

4. Objects of typearray are converted to typestring by converting the values of all array
elements to typestring and concatenating these string objects. No separators are inserted
between the array elements. The element keys are ignored.

5. All objects not convertable to typestring using one of the rules above are converted to type
string by putting the type name in angle brackets (i.e.< and>). E.g. an object of typevref is
converted to the string “<vref>”.

If a type conversion is not possible, a fatal runtime error isgenerated.

bool to_bool(bool &error)
Return the boolean value of the object. If the object is not oftypebool, it is converted to type
bool using the ruleset above. If the object can not be converted totypebool, FALSE is returned
and a conversion error is indicated.

bool &error
In case of a conversion error,error is set toTRUE.

int to_int(bool &error)
Return the integer value of the object. If the object is not oftypeint, it is converted to typeint
using the ruleset above. If the object can not be converted totypeint, 0 is returned and a
conversion error is indicated. If the resulting intger value can not be converted to the nativeint type
(overflow), an error is indicated and the minimum/maximum representatable value is returned (e.g.
in C these will beINT_MIN andINT_MAX).

bool &error
In case of a conversion error,error is set toTRUE.

double to_double(bool &error)
Return the floating point value of the object. If the object isnot of typefloat, it is converted to
typefloat using the ruleset above. If the object can not be converted totypefloat, 0.0 is
returned and a conversion error is indicated. If the resulting floating point value is too large for the
nativedouble type, infinity (or negative infinity, if appropriate and available) is returnedwithouta
conversion error indication.

bool &error
In case of a conversion error,error is set toTRUE.

59

string to_string()
Return the string value of the object. If the object is not of typestring, it is converted to type
string using the ruleset above. Variable references embedded in the string value arenot resolved.

Note: Rule 5 in the ruleset above makes sure thatall objects can be converted tostring.

string str(Env env = null)
Return the string representation of the simple object. The string representation is created using the
str() method from the environment object. If thestr() method returnsnull, the
to_string()method is used to create the string representation.

Env env(default valuenull)
The environment object. The special valuenull represents the default environment.

The following methods can be used to examine simple objects that can’t be mapped to a simple base type.
No type conversion is done. If an object is not of the expectedtype, a fatal runtime error is generated.

SObjectbinary_type_id(void)
Return the type ID object of a binary object (i.e. theid field of thedatafield, see section 2.1). It is a
fatal runtime error if the called object is not of typebinary.

byte[] binary_data(void)
Return the data held by thebodyof a binary object. It is a fatal runtime error if the called object is
not of typebinary.

int array_count(void)
Return the number of elements stored in an array object. It isa fatal runtime error if the called
object is not of typearray.

SObject[] array_values(void)
Return an array holding the values stored in an array object.It is a fatal runtime error if the called
object is not of typearray.

SObject[] array_keys(void)
Return an array holding the keys stored in an array object. Itis a fatal runtime error if the called
object is not of typearray.

string vref_ref(void)
Return the reference string of a variable reference as an extended UNICODE string as defined in
section 2.3.24 It is a fatal runtime error if the called object is not of typevref.

int expr_type(void)
Return the operator type of an expression object. This is oneof the constants listed in table 2 on
page 49. It is a fatal runtime error if the called object is notof typeexpr.

SObject[] expr_op(void)
Return an array of expression operands. It is a fatal runtimeerror if the called object is not of type
expr.

SObjecteval(Env env = null)
Perform an object evaluation. The semantics of an evaluation operation depends on the object type:

string
If the string object contains variable references, these variable references are resolved.

24An extended UNICODE string can be resolved by creating astring object withSObject::STRING_ucx() and calling
SObject::resolve().

60

vref
The variable reference is resolved. If the resulting objectis of typestring or
expression, theeval() method is called again on the result.

expr
If a class environment is associated with the first operand ofthe expression, theeval()
method of that environment is called to perform the evaluation (see section D.2). If the
expression object itself is associated with a class name, that class name is applied to the
resulting object.25

all other types
The called object is returned.

Note that theeval() method calles itself recursively only if an object of typevref resolves to an
object of typestring or expr. As a consequence, at most one recursion is performed.
Parameters:

Env env(default valuenull)
The environment used for evaluation. The valuenull represents the default environment.

The method returns the result of the evaluation ornull if the evaluation failed.

SObject resolve(bool recursive = true, Env env = null)
Resolve variable references. The method may operate recursively on all contained objects. An
object of typestring is replaced by a string with all variable references resolved. An object of
typevref is resolved. All other objects are kept unchanged.

bool recursive(default valuetrue)
Flag indicating if the method should operate recursively. If this flag is set, the method operates
on all objects contained in the called object. If the flag is clear, the method operates only on
the called object itself.

Env env(default valuenull)
The environment used for variable resolution. If this isnull, the environment of the called
object is used.

The method returns the resolved object. If no resolution wasperformed, the returned object is the
called object itself. The caller may compare the called object to the object returned to find out if a
variable resolution was done.

Note: The resolution of variable references may yield more variable references. If this is the case,
the variable references returned by a variable lookup arenot resolved.

int compare(SObjectoperand, Env env = null)
Perform an ordered comparison of the called object with the specified objectoperand. Variable
references in strings are resolved before the objects are compared. Objects of typevref arenot
resolved.
Parameters:

SObjectoperand
The operand compared with the called object.

Env env(default valuenull)
The environment object. The special valuenull represents the default environment.

Note: This comparison method implies a total order on simple object values. This order depends on
the variable resolution methodvref() or vref_str() of the environment object.

The method returns:
25Applying a class name to an expression object can be interpreted as a cast operation.

61

-1 if the called object is smaller than the operand,

0 if the called object is equal to the operand (after resolvingvariable references in strings),

1 if the called object is greater than the operand.

D.3.5 Serialization and Deserialization

class SObject
{
// ...
static final int CTX_GENERAL = 1;
static final int CTX_SELECTION = 2;
static final int CTX_ARRAY = 3;
static final int CTX_EXPRESSION = 4;
static final int CTX_STRING = 5;

static final int SER_BINARY = 1;
static final int SER_TEXT = 2;
static final int SER_TEXT_COMPACT = 3;
static final int SER_TEXT_PRETTY = 4;
// ...
static SObject unpack(byte[] ser,

int context = SObject.CTX_GENERAL,
Env env = null, bool envall = false);
static SObject unpack(string ser,

int context = SObject.CTX_GENERAL,
Env env = null, bool envall = false);
byte[] pack(int mode = SObject.SER_TEXT);
// ...

};

Serialization and deserialization is performed by the object methodspack() (serialization) and
unpack() (deserialization). The serialization contexts are represented by theCTX_ constants:

CTX_GENERAL
general context.

CTX_SELECTION
selection context.

CTX_ARRAY
array context.

CTX_EXPRESSION
expression context.

CTX_STRING
string context.

The deserialization method (unpack()) accepts both serialization forms, binary and text serialization.
The binary serialization is recogized if the specified context is notCTX_STRING and the high bit of the
first byte of the serialization is set.

When the deserialization is done, the specified environmentobject (parameterenv) is bound to all object
instances created that are not of typenil, bool, int, float. The flagenvallforces the specified
environment to be attached toall objects.

The serialization methodpack() can be used to create the following serialization variants:

62

SER_BINARY
A binary serialization is created.

SER_TEXT
A standard text serialization is created. The serialization will contain whitespace characters for
better readability.

SER_TEXT_COMPACT
A compact text serialization is created. The serializationwill be as dense as possible.

SER_TEXT_PRETTY
A pretty printed text serialization is created. The serialization will contain a consiterable amount of
whitespace.

Note that the text serialization variantsSER_TEXT, SER_TEXT_COMPACT, andSER_TEXT_PRETTY
may produce the same output for some implementations.

staticSObjectunpack(byte[] ser, int context = SObject.CTX_GENERAL, Env env = null)
Deserialize a simple object. The serialized representation may be text or binary (resolved
automatically). After deserialization, theunpack() method from the appropriate class
environment is called.

byte[] ser
The serialization of the simple object.

int context(default valueSObject.CTX_GENERAL)
The serialization context (see section 3.1.1 on page 10). Ifser is a binary serialization, the
contextparameter is ignored.

Env env(default valuenull)
The environment object. The special valuenull represents the default environment.

On success, the deserialized object instance is returned. On error,null is returned and the error
indicatior of the environment objectenvis set.

staticSObjectunpack(string ser, int context = SObject.CTX_GENERAL, Env env = null)
Deserialize a simple object. This is a variant of theunpack() method above, acceping a string
holding the serialization. The string is converted to UTF-8before deserialization.

int context(default valueSObject.CTX_GENERAL)
The serialization context (see section 3.1.1 on page 10). Ifser is a binary serialization, the
contextparameter is ignored.

string ser
The serialization of the simple object, represented as a native string. This string is
converted to UTF-8 before deserialization.

Env env(default valuenull)
The environment object. The special valuenull represents the default environment.

On success, the deserialized object instance is returned. On error,null is returned and the error
indicatior of the environment objectenvis set.

byte[] pack(int mode = SObject.SER_TEXT, Env env = null)
Create a serialization from a simple object instance. Before serialization, thepack() method of
the class environment is called.

int mode(default valueSObject.SER_TEXT)
This parameter specifies the serialization variant. This isone ofSER_BINARY, SER_TEXT,
SER_TEXT_COMPACT, SER_TEXT_PRETTY. SpecifySER_BINARY for a binary
serialization andSER_TEXT for a default text serialization.

63

Env env(default valuenull)
The environment object. The valuenull represents the default environment.

The method returns a nativebyte-array holding the serialization of the called object.

D.3.6 The Default Environment

The default environment can be obtained and defined using thefollowing static methods from theEnv
class:

class Env
{
// ...
static Env get_default(void);
static void set_default(Env env);
// ...

};

staticEnv get_default(void)
Return the current default environment. The method returnsthe environment itself, not a clone.

staticvoid set_default(Env env)
Set the default environment.

Env env
The new default environment object.

D.4 The Standard Environment

A programming library may support the standard expression semantics described in appendix B
(Expression Semantics) and/or the standard object classesdescribed in appendix C (Standard Object
Classes). If these standard expression semantics are supported, they should be available through a factory
method of the environment class.

class Env
{
// ...
static Env STANDARD(void);
// ...

};

staticEnv STANDARD(void)
Return an instance of the standard environment. Note that a new instance is returned for every call
to the method, so the caller may modify the environment.

For object-oriented programming environments, the standard environment should be an instance of a class
derived from the classEnv calledStdEnv:

class StdEnv extends Env
{
// ...

};

64

D.5 Message Identifiers

An error condition encountered by a simple objects implementation is communicated to the application
using message identifiers. A message identifiers is a sequence of ASCII alphanumerics and underscores.
Every message identifier is associated with a set of named formal parameters.

An application willing to handle error message identifiers typically declares a class derived from the
standard environment classStdEnv implementing theEnv::message()method.26

XXX a list of message identifiers and parameters goes here. should use separate subsubsections so the
message identifiers appear in the TOC.

26An application written in C or another non-object-orientedlanguage would could a standard environment instance directly.

65

