Simple Objects

Sascha Demetrio

July 23, 2005

Abstract

This documents defines the properties of so called simpkctband how these objects are
serialized. A simple object is completely self containethwespect to data. The semantics of simple
object methods are up to the application handling simpleaibj

Technically, a simple object is a container for simple duited data consisting of numeric values,
arrays (may be associative), UNICODE strings, opaque piobjects, external variable references and
programmatic expressions. There are two serializations$atefined for simple objects: a human
readable and self documenting text serialization and a ectipnary serialization.

Simple objects may be used for data storage and exchangedetpplications. A typical
application would be a remote procedure call / method inttongRPC/RMI) protocol based on a
simple object serialization.

Simple objects may come handy where object representdigsed on XML are too much. An
application may use both, simple objects and objects repted as instanced of XML schemas.

A reference implementation of a programming library offigraccess to simple object serializations
can be found on

http://ww.w zard-| abs. or g/ sobj ect/

The reference implementation is available under a BSD $itdase an may be used free of charge
for commercial and non-commercial applications. For dgtaee thé.| CENSE file included in the
distribution.

Contents

1 Overview

2 Structure

2.1
2.2
2.3
2.4
2.5

3 Text Serialization

3.1

3.2

4.1
4.2
4.3

5 Addresses

51

Object TYPES e
Object Classes e e
Extended Strings e
Expression Objects L e
Comparing Simple Objects e
Text Serialization Syntax e
3.1.1 SerializationContexts e
3.1.2 CommeNnts
3.1.3 Keywords
3.1.4 Thegeneral Context.
3.15 TheselectionContext
3.1.6 Thearray Context e
3.1.7 TheexpressionContext
3.1.8 ThestringContext
3.1.9 BinaryObjects e
3.1.10 Variable References e
3.1.11 Quoted SEriNgS o e e
ASCII Serialization e
4 Binary Serialization

The Type Byte e
TheClassName e
TheDataBytes
4.3.1 TheTypesil andbool
432 TheTypent e
433 TheTypdloat
434 TheTypsString o o i e
435 TheTypdinary e
436 TheTypa&rray it e e
4.3.7 TheTyp@XPr o o e e e e e
4.3.8 TheTyperref e
Address Resolution e
5.1.1 Address ResolutionOperations. e oo

5.1.2 The Resolution Process

0 N ~N~N OO

10
10
10

10

11

11
12
12
12
14

14
15
16
18

19
19
20
20
20
20
20
20
21
21
21
22

5.1.3 TheResolution Function e e 25

5.2 Pure Addresses e 26
5.3 Considerationsand Examples. L e 26
5.4 UNICODE Normalization e 27
5.4.1 SurrogatePairs 27
5.4.2 Normalization 27
A Serialization Examples 28
A.1 Text Serialization Examples L 28
A.2 Binary Serialization Examples 28
B Expression Semantics 29
B.1 Arithmetic Semantics 29
B.1.1 EXPR_POS (Unary positive operator) i 29
B.1.2 EXPR _NEG(Unary negationoperator). 29
B.1.3 EXPR_NOT (Unary logical negationoperator) 92
B.1.4 EXPR _PLUS (Binary plusoperator) 29
B.1.5 EXPR_M NUS (Binary minusoperator) 30
B.1.6 EXPR_MJL (Multiplication operator) 31
B.1.7 EXPR_DI V(Divisionoperator) i 31
B.1.8 EXPR_MOD(Modulooperator). 32
B.1.9 EXPR_CAT (Concatenationoperator) 32
B.1.10 EXPR _LS (Less-than comparisonoperator) 2 3
B.1.11 EXPR_LE (Less-or-equal comparisonoperator) 32
B.1.12 EXPR_GT (Greater-than comparisonoperator) 33
B.1.13 EXPR_GE (Greater-or-equal comparison operator) 33
B.1.14 EXPR_EQ(Equals comparisonoperator) 33
B.1.15 EXPR_EQ APPROX (Equals approximate comparison operator) 33
B.1.16 EXPR_NE (Not-equal comparison operator) 33
B.1.17 EXPR_NE_APPROX (Not-equal approximate comparison operator) 33
B.1.18 EXPR_AND (Logical AND operator) 33
B.1.19 EXPR_OR(Logical OR operator) i i 33
B.1.20 Comparable Objects 33
B.1.21 Approximate CompariSons e e e e 34
B.2 Programmatic Semantics e 34
C Standard Object Classes 36
C.1 TheStandardDefaultClass 36
C.2 Thetime Class Environment e 36
C.2.1 ThelsO8601TimeandDataFormat, 37
C.2.2 The Epoch Representation muu... 37
C.2.3 MethodsoftheinmeClass 37

C.2.4 Time Expression Evaluation 0. 39

D Simple Objects API 41
D.1 TheEnvironmentClass i e 41
D.2 TheClass EnvironmentClass i i i i e 43

D.2.1 The Default Class Environment uu..... 45
D.3 Runtime Objects e e 45
D.3.1 Factories e e 45
D.3.2 Object Modification e . 49
D.3.3 SuboObjeCt ACCESS e 55
D.3.4 ObjectEvaluation. e 58
D.3.5 Serialization and Deserialization 62
D.3.6 The Default Environment. 64
D.4 The Standard Environment L e 64
D.5 Message Identifiers e 65

1 Overview

Simple objects are objects with a defined serializationrtieat be accessed from different runtime
environments. The following requirements were considérele design:

e The most common basic data types shall be supported. Thatiis @bject, booleans, integers,
floats, strings, lists/arrays/dictionaries.

The string type shall support UNICODE characters.

It shall be possible to store opaque binary data.

It shall provide a method-call data type suitable for remm&thod invocation (RMI).
¢ An efficient binary serialization shall be defined.

A human readable text serialization shall be defined.

A standard representation of addresses in simple objealid®hdefined.
To keep the design simple, the following limitations areegpted:

e There is no support for a reference or pointer type.

e The serializations are not optimized for fast random access

This specifcation consits of@re part and arappendix The core part contains everything that is required
for serialization and deserialization of simple objectse Epecifcation cAddressess also part of the

core specifcation. An address is an expression selecting@bgect of a simple object (e.g. an object
contained in an array or part of an expression). The follgvgiections will cover the details of the simple
object structure, serializations, and addresses. Seztoners the structure of simple objects, sections
3.1 and 4 define the text and binary serializations, secticovgrs addresses.

Semantics of classes or expressionsaspart of the core specifcation. Specific application prograng
interfaces (APIs) are alswtcovered by this specifcation. However, some semanticsease v
commonplace (like arithmetic operation semantics on nimtgpes), as well as some object classes and
APIs. Theappendixcovers some of these aspects. Appendix A lists some exawitiest and binary
serializations of simple objects, appendix B defines stahelgpression semantics, appendix C defines
some common object classes along with representation amahdgies, appendix D defines a language
independed simple object API which should inspire actuap#® objects programming libraries.

2 Structure

A simple object is atfype class datd) triple. Thetypeis one of the followingni | , bool ,i nt,fl oat,
st ring, bi nary, array (representing a simple array or an associative array)eapd (representing
a programmatic expression). The object’s class is eithié(mat present) or a UNICODE string
identifying the object’s class. The semeantics of the dlgjkess is up to the application, however some
object classes are defined in the appendix (which is not p#neccore specification). Thiatafield
depends on the object type.

2.1 Object Types

Thetypefield of a simple object tuple has one of the following values:

nil
This type is reserved for theiL object. TheniL object typically represents an unspecified or
undefined value. Ndatafield is associated with this type.

bool
An object of this type holds the truth valuerUE or FALSE in its data field.

i nt
An object of this type represents an integer value. d&mfield holds a 64 bit signed integer in the
range—2%3... (263 1).

f1 oat
An object of this type represents a floating point value. @agfield holds a 64 bit IEEE floating
point number. This is typically equivalent to the ISO C tyjmubl e.

string
An object of type string represents a sequence of UNICODEathers and escape sequences. The
datafield holds a null-terminated sequence of bytes encodinythieCODE characters and escape
sequences using the UTF-8 scheme. UNICODE strings withpessquences are called extended
strings and are covered in section 2.3.

bi nary
An object of this type represents an opaque byte array, edsdavith a simple object describing its
type. Thedatafield is a tuple {d, body), whereid is an arbitrary simple object armbdyis a byte
array.

array
An object of typear r ay is a (possibly empty) sequence of tuples of arbitrary siropjects. The
datafield as a list of simple object tuplekdy, valug. For a typical array (or list), thkeyfield of all
tuples holds the objectiL . For an associative array (or dictionary), #tey/field holds the
associated key. Note that the key is not necessarily unifjoeultiple values share the same key,
the last value with that specific key is the value bound to e k

expr
Objects of typeexpr (short for “expression”) represent a programmatic expoesg\n expression
combines one or more objects with an operator. Section Zdrs@xpressions in detail.

vr ef
Objects of typevr ef represent a variable reference. Tdetafield of a variable reference holds an
extended UNICODE string (see 2.3. The semantics of a vari@berence are defined by the
application).

2.2 Object Classes

Theclassfield of a simple object is optional. We'll say the class figddhull if it is omitted. If present, the
class field is a simple UNICODE string (i.eotan extended UNICODE string as defined in section 2.3 —
class names mayot contain variable references).

A programming library may support callback hooks for sézation and deserialization of objects
belonging to a specific class. For example, time informatiay be stored in ISO notation and translated
to an epoch representation when deserialized.

A set of standard object classes (and semantics) is defirsgzbiendix C.

2.3 Extended Strings

An extended strings a sequence of UNICODE characters and escape sequencesc#@pe sequence
either represents the charad&SC itself or a variable reference. An escape sequence is intextiby the
ASCII characteESC (code poinDx1b).

The simple case is a self quoting escape sequence. ThisdbdinacteESC followed by anotheESC
character. This sequence represents a sia§lé character.

A variable referencing escape sequence iE8€ followed by anSTX and a reference string. The
reference string is terminated by the sequeBSE-ETX (ASCII STX has the code poiriix2, ASCII
ETX has the code poirtx 3) or by the end of the string. The reference string itself manytain escape
sequences, so the terminatlB§C—-ETX must match the initiaESC-STX.

An unrecognize®SC sequence or aBSC-ETX sequence outside of an escape sequence is an error and
the semantics are undefined.

The semantics of variable references are completely ugetagpplication. A programming library
implementing access to simple objects would typically hardriable references in extended strings
transparently through a callback mechanism or virtual meth

2.4 Expression Objects

An expression object represents a programmatic expressigaining simple objects (operands) linked
with operators. We'll call operators combining two or mor@eessions infix operators, since these
operators are typically written infix (between the operdmdsen the expression is written down.

The following operators are defined for simple object exgimess:

Plus, minus, times, divide, modulo, concat.
The plus/minus/times/divide/modulo/concat operatorgsents an abstract
addition/subtraction/multiplication/division/modutmncatenation of two simple object
expressions.

Approximate less-than, less-or-equal, greater-thamatgreor-equal.
These operators represent a symbolic approximate orderagarison of two simple object
expressions using a specified fuzz value. This is a threeopexxpression where the first two
operands are objects being compared and the third operémaifiszz value.

Less-than, less-or-equal, greater-than, greater-catequ
These operators represent a symbolic ordered comparisao agimple object expressions.

Approximate equal, not-equal.
These operators represent a symbolic application conqueits equality of two simple object
expressions using a specified fuzz value. This is a threeopexxpression where the first two
operands are objects being compared and the third operémalfiszz value.

Equal, not-equal.
These operators represent a symbolic comparison for ¢goativo simple object expressions.

And, or.
These operators represent a symbolic logical AND/OR coathin of two simple object
expressions.

Not, negate, positive.
This operator represents a symbolic logical/numericahtieg/numerical positive of a simple
object expression.

Conditional.
This operator represents a conditional combination oftlsimple object expressions. The first
operand represents the condition selecting either thenslemathe third operand.

Sequential combination.
The sequential combination operator combines two simpjecbbxpressions to a symbolic
sequence.

Selection.
The selection operator combines two simple object expyrssb a symbolic selection expression.
The first operand represents the object being selected findnthe second operand represents the
selector.

Index, call.
An index/call operation combines two expressions to a syimbaex/method call expression. The
first operand represents the object being indicated/calelthe second operand represents the
index/argument list. The second operand of an index/ca&iatpr is always an array object.

The semantics of expressions are defined by the applicaiersimple objects only take care of storing
the expression. A programming library implementing ac¢esimple object serializations may or may
not offer support in evaluating expression objects.

Appendix B suggests expression semantics for all operatamept for the call operator. A programming
library for simple objects should support for evaluatingessions conforming to these semantics.

2.5 Comparing Simple Objects

Simple objects may be compared for equality. The core spatiifin does not define the semantics of an
ordered comparison on simple objects, ordered comparsensovered in appendix B (Expression
Semantics). The equality of two simple objects may depenti@@application context (see below).

Simple objects of different typeaypefield) or class ¢lassfield) are never equal wrt. this definition. If
both thetypeandclassof two simple objects match, these objects are compareddiogao the
following rules:

nil
Two objects of typeni | are considered equal.

bool ,i nt eger,fl oat
Two objects of typdool , i nt eger, orf | oat are considered equal, if their numeric values are
equal. For values of typlel oat this mearexactidentity. Note that an integer value is alwayst
equalto the corresponding (numerically equal) floating point ivem

string
Two strings are considered equal, if the UTF-8 encoding efésolved strings (i.e. after
preforming a substitution of all variable references inghrengs) are byte-per-byte equal.

Implementation Notelf an application wants to compare two strings as-is, it maate an
environment where variable references are not substitét@dogramming library may provide a
“raw” variant of object comparison as a convenience feature

bi nary
Two binary objects are considered equal if the type ID olsjace equal and the data parts are
byte-per-byte equal.

array
Two arrays are considered equal if they contain the same audailgkey, value pairs the
correspondingieyandvalueobjects (at the respective same index) compare equal.

Note: If arrays are used as dictionaries, the order of the keygjgfgiant. If an application wants
to perform a true dictionary comparison, it should normelize. sort) the arrays in an appropriate
way.

expr
Two expressions are considered equal if they use the samatope¢he same number of operands,
and if the respective operands of both expressions compasd.e

3 Text Serialization

The text serialization is intended for human readable dlsjgcage and for objects specified by a user of
an application (e.g. in a configuration file). The text sé&z&tion syntax can be used for user specified
values in a configuration file or even for the entire configorstfile.

The text serialization used for storage utilizes a subs#tefvailable syntax and uses ASCII characters
only. In this section we'll first describe the full syntax dfrgple object text serializations. The ASCII only
serializations are covered in section 3.2.

3.1 Text Serialization Syntax

A text serialization of a simple object is a sequence of bptmded characters. For objects nested within
a simple object, the serialization of the nested object igained within the serialization of the entire
object as a substring. The syntax of the simple object tewdlsztion mimics the typical programming
language syntax of constant expressions.

3.1.1 Serialization Contexts

A text serialization is always interpreted relative to atesttype (called the serialization context, or
context for short). An entire object is typically interpedtrelative to thgener al context or

expr essi on context, but may also be interpreted relative to anothetesttnWhen a text serialization
is read, the application specifies a serialization cont&serialization context is one of the following:

gener al
The general context is the typical top-level context fot tecializations.

sel ection
Thesel ect i on contextis used when the specified object acts as a key in aniatge array or
selector in a selection expression. Every valid seridbpain thegener al context is also valid in
thesel ect i on context. The only difference is that keywords are integulets strings in the
selection context.

array
In the array context, the text serialization is interpreaed list of simple objects (values) or tuples
of simple objects (key/value pairs). Values and key/vakiespmay be mixed.

expr essi on
Intheexpr essi on context, the text serialization is interpreted as a hidnaof objects connected
with operators.

string
Inthest ri ng context, the text serialization is interpreted as a string.

3.1.2 Comments

A text serialization of a simple object may contain textuaheents. Comments may appear in all places
where insignificant whitespace may be used. Note that cortsmeay not be used when a serialization is
parsed in thest r i ng context.

Two forms of comments are supported: script-style commamisC style comments. Script style
comments are introduced by a hash charagtéahd are terminated by the next line separator (either
ASCII CR or ASCII LF) or by the end of the serialization. C style comments ar@thtced by the
character sequencé*” and must be terminated by the character sequehté. "C style comments may
not be nested.

10

3.1.3 Keywords

Some objectsNIL , booleans and out-of-range floating point numbers) areesgmted by keywords. In a
simple object text serialization, the following keywords aecognizedni | ,t r ue, f al se, nan,i nf,

- i nf . Keywords are matched case insensitive, ergie, TRUE, Tr Ue are all valid notations for the
keywordt r ue.

3.1.4 Thegener al Context

Thegener al context is the default context for the text encoding. Legdind trailing whitespace is
ignored (skipped).

A serialization ingener al context may start with an (optional) class specifier. A cigsecifier is a class
name enclosed in curly braces. The name enclosed in brageifisp theclassfield of the simple object.
The class name may be encoded as a UTF-8 string and may cohgaacter escape sequences
introduced by a backslash as described in the section “@Qu&ttings” (3.1.11, page 16). Whitespace
following the class specifier is ignored (skipped).

In addition to the class specifier, the following lexicalstiures are recognized:
e The keywordni | represents theiL object.
e The keyword r ue represents an object of typ@ol with the truth valuerRUE.
e The keyword al se represents an object of typ@ol with the truth valuerALSE.

e The keywordsan, i nf, - i nf. These keywords represent the IEEE floating point values NAN
(not a number), INF (infinity), and -INF (negative infinitypn platforms not supporting a quiet
NaN!, infinity is used instead of NaN. On systems not supportirigmes! infinity, an unsigned
infinity is used for both positive and negative infinity.

¢ Integer values in C notation (without suffixes). These val@present objects of type int (64 bit
integer). The value associated with notations describivege that is out of bounds is undefined.

e Floating point values in C notation (including ISO C hex f)afThese values represent objects of
type float (64 bit floating point, equivalent to addubl e in most C implementations).

e Binary objects. A binary object is enclosed in a pair of Sn§B5CII percent signs¥s or double
ASCII percent signs%88. Text serializations of binary objects are covered in igecB.1.9.

e Unquoted stringsAn unquoted string is a sequence of ASCII alphanumeriaderstores, and
hyphens. An unquoted string may not start with a digit andtroostain at least one character that
is not a hyphen. If an unquoted string starts with a hyphersgtond character may not be a digit.

e Quoted stringsA quoted string is a sequence of characters enclosed imguetaracters (single
guotes or double quotes). Quoted strings are covered imeextl.11.

e Arrays. An array serialization is enclosed in a matching pbrackets (ASCI[and ASCII]). The
character sequence enclosed is interpreted relative tarthg context.

e Expressions. An expression serialization is enclosediiargheses (ASCI| and ASCII)). The
character sequence enclosed is interpreted relative exgiression context.

e Variable references. A variable reference is introducedrbASCII dollar sign. Variable references
are covered in section 3.1.10.

1A quiet NaN is a not-a-numner value that does not rise a flggiint exception.

11

3.1.5 Thesel ecti on Context

Thesel ect i on context can be considered a variant of fener al context. Every object serialization
that is valid in thegener al contextis also valid in theel ect i on context, and vice versa. However,
inthesel ect i on context, all keywords are recognized as strings. When a &ayis recognized as a
string, its casés significant.

To encode a keyword represented object in selection cqritexbbject can be written as an expression
(see section 3.1.7). This is done by putting the keyword neptheses.

3.1.6 Thearr ay Context

In thear r ay context, the serialized object is interpreted as an arragsociative array of simple objects,
that is, a sequence of values (simple objects interpretgdirer al context) and key/value pairs.

A key/value pair is represented by two simple object serdaibns separated by an ASCII equal sigti “
or ASCII colon “ . The first object represents the key and is interpretexihect i on context, the
second object represents the value and is interpretgdrier al context.

The values and key/value pairs in the array are separatedhibyspace and/or commas. More precisely,
in array context, commas are treated as whitespace.

3.1.7 Theexpr essi on Context

Theexpr essi on context is used to interpret a serialization of a simple cig&pression. The

expr essi on context offers a syntactical superset of ener al context. Every valid and complete
serialization is also valid in thexpr essi on context fompleteneans that the serialization is
terminated by the end of the string).

Intheexpr essi on context, simple object serializations may be combinedgigie following operator
sings: “+” (plus, positive), * ” (minus, negate),*” (multiply), “/ " (divide), “9% (modulo),~
(concatenation),?: ” (conditional), “&&” (logical AND), “| | ” (logical OR), “! ” (logical NOT), “<”
(less than), £=" (less or equal), " (greater than), =" (greater or equal),==" (equal), 1 =" (not

equal), ; " (sequence), " (selection), 1" (index), “() " (method call).
If multiple operators are present, the expression nessinggithe following precedence rules:

1. The operators with the highest precedence are nestedrtirsperator precedence values are
defined below.

2. For unary operators with equal precedence, the inneesgjams are nested first.

3. For infix operators with equal precedence, the expressimmnested from the left to the right.

The list below specifies the operator syntax in detail. Fergwperator, the operator precedence is
specified. For every operand, the context is specified. Taeifsgd context applies only if the operand is
not combined by an operator precedence rule.

Selection operator.”” (precedence 9)
Syntax:object. selector
This represents a selection expression. J¢lectorstring is interpreted isel ect i on context
and theobjectstring is interpreted iigener al context.

Index operator[‘'] " (precedence 9)
Syntax:object[index]
This represents an index expression. dhgctstring is interpreted isel ect i on context and
theindexstring is interpreted imr r ay context.

12

Method call operator(‘) " (precedence 9)
Syntax:object(argumentg
This represents a method call expression. dbjectstring is interpreted isel ect i on context
and theargumentsstring is interpreted iar r ay context.

Logical NOT operator!” (precedence 8)
Syntax:! object
This represents a logical NOT expression. Dhgectstring is interpreted igener al context.

Arithmetic negate operator ” (precedence 8)
Syntax:- object
This represents an arithmetic negation expression.obfectstring is interpreted igener al
context.

Arithmetic positive operator
Syntax:+ object
This represents an arithmetic positive expression.dtjectstring is interpreted igener al
context.

(precedence 8)

Concatenation operater(precedence 7)
Syntax:operand ~ operang
This represents a concatenation expression. Both opeogedand andoperang are interpreted
in gener al context.

Multiply/divide/modulo operators*”, “/ ”, “ 98 (precedence 7)
Syntax:
operand * operang
operand / operang
operand %operang
This represents a multiplication/division/modulo exsies. Both operandsperand andoperang
are interpreted igener al context.

Plus/minus operatorst”, “ - ” (precedence 6)
Syntax:
operand + operang
operand - operang
This represents a plus/minus expression. Both opempeland andoperang are interpreted in
gener al context.

Approximate ordered comparison operatofs#- 7, “<= +-" “> +-" “>= +-"(precedence 5)

Syntax:

operand < operang +- operang

operand <= operang +- operang

operand > operang +- operang

operand >= operang +- operang
This represents an approximate ordered comparison expmegdl operands are interpreted in
gener al context.

Ordered comparison operators’y “ <=", “>" “>=" (precedence 5)
Syntax:
operand < operang
operand <= operang
operand > operang
operand >= operang
This represents an ordered comparison expression. Botamgsmperand andoperang are
interpreted irgener al context.

13

Approximate equality comparison operators approx-egpalox-notequalz= +-",“1 = +-"
(precedence 5)
Syntax:
operand == operang +- operang
operand ! = operang +- operang
This represents an approximate equality comparison esipreécompare for approximate equality,
approximate non-equality). All operands are interpretegiener al context.

Equality comparison operators equal/not-equad™ “! =" (precedence 5)
Syntax:
operand == operang
operand ! = operang
This represents an equality comparison expression (caripaequality, non-equality). Both
operand®perand andoperand are interpreted iggener al context.

Logical AND operator &&” (precedence 4)
Syntax:operand && operang
This represents a logical AND expression. Both operam#sand andoperang are interpreted in
gener al context.

Logical OR operator|‘| " (precedence 3)
Syntax:operand | | operang
This represents a logical OR expression. Both operapdsand andoperang are interpreted in
gener al context.

Sequential operator,” (precedence 2)
Syntax:expression, expressiop
This represents a sequential expression. Both operxmisssion andexpressiop are interpreted
in gener al context.

Conditional operator?: " (precedence 1)
Syntax:condition? expression: expressiop
This represents a conditional expression. All operahglition expression, andexpressiopare
interpreted irgener al context.

3.1.8 Thestri ng Context

Thest ri ng context is used if the serialization is to be interpreted sisiag. Inst r i ng context,
leading whitespace is skipped. If the first non-whitespdaeacter is a quoting character (single quote or
double quote), the string is interpreted as if it was paraggeiner al context.

If the first non-whitespace character is not a quoting charaihe entire serialization starting with the

first non-whitespace character is interpreted as a strisgafie sequences (introduced by a backslash
character) and variable references are accepted as ifihg sts enclosed in a pair of quoting characters.
If the string contains unquoted quoting characters, thaséirg characters are interpreted literately.

3.1.9 Binary Objects

Binary objects are serialized either as text containingessequences for non-ASCII characters or as
base 64 encoded string. The text variant has the advantdggngf human readable but has the
disadvantage that line breaks or other whitespace chasantey be disturbed when the serialization is
stored or transferred. The text variant is typically usedifagments of script code that are in itself
resistant to whitespace/line break modifications. The Bdsencoding is completely 8 bit clean but takes
a little bit of extra storage/bandwidth.

14

Base 64 Encoding

The base 64 encoding of binary objects is introduced by desiég§ClI percent sign¥s, followed by a
simple object interpreted isel ect i on context representing thi field of the binary object, followed
by a single ASCII colon character *, followed by the base 64 encoded binatgtafield of the binary
object (called thelata sectionand a terminating single ASCII percent sign. If ideof the binary object

is itself a binary object (i.e. the serialization startshadtpercent sign), it has to be separated from the
initial percent sign by at least one whitespace charactéitéspace characters preceding the colon and
whitespace characters in the data section are ignored.

Text Encoding

The serialization as text is introduced by double ASCII petsigns %848, followed by theid represented
by a serialization of a simple object interpretedigl ect i on context, followed by a single ASCII colon
“. " followed by a thedatarepresented as ASCII text (called tiiata sectioi, followed by terminating
double ASCII percent signs. In the data section, leadindespiace up to (and including) the first line
break is ignored. If the leading whitespace does not contain atineak, the entire leading whitespace is
ignored.

Inside the binary section, special characters can be edeegirey the sequencgX”, followed by a single
non-alphanumeric character (which is replaced by thatattar) or two hex digits (specifying the byte
value). “\ X" sequences are substituted only if the number of unescapadtashes preceding th¥™is
odd. A trailing “\ X" sequence (i.e. preceding the terminating double ASCltget signs) is skipped
(ignored).

Examples for escape sequences in the data section:

X\\X
Not processed, since the number of unescaped backslagtesljpig the secon” is even.

X\X\\X1b
The sequence\X\" is replaced by a single backslash character, the sequédd” is replaced
by an escape character (ASESC). Note that the backslash character preceding the sequence
“\X1b" is escaped, hence the number of unescaped backslashedipgethe X1b” is odd.

X\ X%%
The sequence\X’ is skipped. The %88 marks the end of the data section. If you wish to quote
double ASCII percent signs, you can use the sequeckds.

3.1.10 Variable References

Variable references are introduced by a dollar sign andai@fed by areference stringWhen a
variable reference is resolved by a simple objects progriagptibrary, the reference string is passed to
the application which in turn generates a replacement abjée variable reference syntax offers three
syntax variants for specifying the reference string:

Simple Reference
The reference string is specified as a sequence of ASCIl alpharics and underscores. The
sequence has contain at least one character. The sequésrteiigated by a character that is not an
ASCII alphanumerics and not an underscore or by the end dfdtialization.

Quoted Reference
The reference string is enclosed in double angle bracketsdduble less-than<<” and double
greater-than*>". The reference string may contain variable referenceschadacter escape
sequences (introduced by a backslash). If the refereriog inds with a single backslash, the

2See section 3.1.1 on page 10.
3ASCII LF, ASCII CR, or ASCII CR-LF.

15

trailing backslash is ignored (this feature is requiredrtoaele a reference string ending with a
greater-than sign). (Note that if the reference string@aimsta double greater-than sign, it has to be
guoted as *\ >".)

Grouped Reference
The reference string is delimited by a matching pair of ginggharacters. The following
characters are grouping characters:,“) ", “[", “1 ", “{", “} ". The delimiting pair may itself
contain matching pairs of quoting characters. Quoted gngugharacters and characters contained
in a nested quoted reference are not considered for matchireggdelimiting pair of grouping
characters is part of the reference string.

No whitespace is allowed between the dollar sign and theaeée string.

Variable references using a quoted reference or a groufe@nee may contain variable references.
When a variable reference is resolved, the variable reéeeoontained in the reference string have to be
resolved first. An application or library program resolviragiable references should provide some sort of
loop detection.

3.1.11 Quoted Strings

A quoted strings a sequence of characters enclosed in a pair of quotingcteas. If the character
sequence contains non-ASCII characters, these characteirgerpreted as UTF-8 encoded UNICODE.
Invalid UTF-8 sequences or invalid (unpaired) UNICODE egate characters are silently discarded.

If a string is enclosed in double quotes variable refereacesecognized. A variable references within a
string is syntactically similar to the serializations ofariable referencing simple object as described in
section 3.1.10. Variable referencing in quoted string®igeced in paragraph 3.1.11 below.

Escape Sequences
To represent special characters, quoted strings may corgaape sequences similar to those available in
ISO C. The following escape sequences are recognized:

\a
Bell (ASCII BEL), code poinOx07.

\b
Backspace (ASCIBS), code poinDx08.

\e
Escape (ASCIESC), code poinDx1b.

\E

The same as\e”".

\f
Formfeed (ASCIIFF), code poinDx0c.

\n
Newline (ASCIILF, Linefeed), code poirfix0a.

\r
Carriage return (ASCICR), code poinOx0d.

\s
A literal ASCII SPACE, code poin0x20.

\t
Horizontal TAB (ASCIIHT), code poinDx08.

16

\\%

Vertical TAB (ASCII VT), code poinOx0b.

\LF,\CR, \CR LF

W\

\$

\(

\)

\l

\]

\

\}

\>

\xN

\N

\uN

\UN

A skipped line break can be inserted by preceding the linalbfeither a Wix styleLF, a
Mac-style singleCR, or a DOS/Windows styl€R-LF) with an unquoted backslash character. A
skipped line break is ignored.

A literal double quote, code poiftk22.

A literal single quote, code poilx27.

A literal backslash, code poifix5c.

A literal dollar sign, code poimdx24. A quoted dollar sign is not recogized as an introducing
character for variable references (see below).

A literal unmatched opening parenthesis, code pox8.

A literal unmatched closing parenthesis, code pB29.

A literal unmatched opening bracket, code pdr6b.

A literal unmatched closing bracket, code pdxt5d.

A literal unmatched opening brace, code pdRr&b.

A literal unmatched closing brace, code pdixt7d.

A literal greater-than sign, code poibx 3e.

Hex escape. The\X" is followed by two hex digits specifying an 8 bit charactede. Note that
“\x00" is illegal, since strings may not contain null-characters

Octal escape. The\" is followed by 1 to 3 octal characters. If an octal escap®i®ived by an
octal digit, it has to be padded with leading zeroes to maRdaligits long. The digits represent an 8
bit character code. Note that000" is illegal, since strings may not contain null-characters

Unicode escape (Java style). Thei" is followed by 4 hex digits specifying a 16 bit character
code. The use of\uU” escapes to form surrogate pairs is discouraged, Ygetd specify code
points that can’t be represented as a 16 bit value.

UTF-32 Unicode Escape. Thel' is followed by 8 hex digits specifying a 32 bit character eod
The use of { U’ escapes to form surrogate pairs is discouraged, thesepmides should be
represented by a singley’ escape.

17

\&R;
Character reference. These references work similar to HRWIL character references. All
symbolic character references of HTML 4.0 are supportedn&tic character reference$&#N; ”
are also supported. Note that numeric character referemeesncoded in decimal, not in hex.

Variable References in Quoted Strings
Quoted strings enclosed in double quotes may contain \laniaferences similar to the variable reference
serializations described in section 3.1.10.

A variable reference is introduced by an unquoted dollar’sigihe dollar sign is followed by eeference
string. The syntax for the reference string is the same as for Variaference serializations described in
section 3.1.10. No whitespace is allowed between the dsiligrand the reference string.

Variable references using a grouped reference may cordaigble references. When a variable reference
is resolved, the variable references contained in thearter string have to be resolved first.

Note: Quoted strings enclosed in single quotes eatcontain variable references.

UTF-8 in Quoted Strings

Quoted strings may contain UNICODE UTF-8 sequences. Anyeeces of characters in the range

0x80 —0xf f (i.e non-ASCII characters) that is not a valid UTF-8 seqesneill be discarded. If the

string contains UNICODE surrogate character pairs, thags pre replaced by the represented character.
Unpaired surrogate characters are discarded.

3.2 ASCII Serialization

Every simple object can be serialized as text using ASCltattars only. The only object type with a text
serialization that can contain non-ASCII characters issthieg object (string serializations may contain
UTF-8 sequences). However, every non-ASCIl UNICODE charaepresented by a UTF-8 sequence
may be represented by an escape sequence as describedbin 3cict 1.

“4A literal dollar sign can be represented by quoting the dslign with a backslash\$”.

18

4 Binary Serialization

The binary serialization is interpreted free of contexte Téngth of the serialization may be determined
reliably from the serialization itself. Every object nebtaside the represented simple object has a binary
serialization that is a substring of the serialization & &mtire object.

Every binary serialization of a simple object is composed type bytean optional class name, and a
(possibly empty) sequence déta bytes

4.1 The Type Byte

The type bytes indicated the objagpe(as defined in section 2.1) and a storage size indicator.

Bits Description

7 1

6 Class name present (1
5... 3 | Objecttype (2)

2 ... 0 | Storage size (3)

~

(1) Class name present.
If this bit is set, the type byte is followed by a null-termied UTF-8 string indicating the class
name of the objecit{assfield). If this bit is clear, no class name is associated withdbject (i.e.
the class name is null).

(2) Object type.
The following list defines the type values for all object tgpe

Value Type Value Type

0 ni | /bool |4 bi nary
1 i nt 5 array
2 fl oat 6 expr

3 string 7 vr ef

(3) Storage size.
The semantics of the storage size depends on the objectTiipestorage size is determined from
the encoded value through the following table:

Value Storage Size| Value Storage Size
0 0 4 64

1 8 5 96

2 16 6 128

3 32 7 extended

The storage sizes 96, 128, and “extended” are not used byithent version of this specification.
The storage sizes 96 and 128 are intended for encoding hpgbeision numeric values, especially
96 and 128 bit floating point numbers. The special value ‘fedeel” might be used by a future
version for encoding arbitrary precision integer and flogippoint values.

19

4.2 The Class Name

If (and only if) bit 6 of the type byte is set, the type byte iidaved by a null-terminated, UTF-8 encoded
string indicating the class namelgssfield) of the simple object.

4.3 The Data Bytes
The format of the data contained in the data bytes of a bireniglization depends on the object type and

storage size defined in the type byte. For all data typestinage size 0 indicates that no data bytes are
present in the serialization of the object. Such an objgutafly represents a suitable null-value.

4.3.1 The Typesii | andbool
The typeni | is always of storage size 0. For objects of tyymo! , the truth value is encoded into the

storage size defined in the type byte. The storage size &atedithe valueaLsE, the storage size 16
represents the valueRUE. Other storage sizes are not valid.

4.3.2 The Typei nt
The data bytes contain the value of an object of typée, encoded as a 2-complement signed integer
stored in big-endian byte order. The storage size indidatebit width (and hence the number of data

bytes). The following storage sizes are allowed: 0, 8, 16a8@ 64. If the storage size is 0, the
represented integer value is 0.

4.3.3 The Typef | oat

For objects of typé | oat , both the size and the format of the data bytes depend ondtegstsize.

Storage Size| Value Encoding

0 No encoding. The represented value is O.

8 The value is encoding as an 8 bit signed fixed point number,
2-complement. The object value 1 is represented by the exloaalue
10.

16 The value is encoded as a 16 bit signed fixed point number,
2-complement. The object value 1 is represented by the exloaalue
100.

32 The value is encoded as a 32 bit ANSI/IEEE 754-1985 floatingtpo
number.

64 The value is encoded as a 64 bit ANSI/IEEE 754-1985 floatingtpo
number.

For storage size 8, the encodable values are in the rafgs ... 12.7 (in steps of (1). For storage size
16, the encodable values are in the rar@27.68 ... 327.67 (in steps of M1).

4.3.4 The Typestring
The typest r i ng represents an extended UNICODE string as defined in sectiofpdge 7). The string

is stored as adé€ngth cdatg tuple, wherdengthindicates the length of the character dedata cdatais a
sequence aengthbytes holding the string using the UNICODE UTF-8 encoding.

20

Thelengthis stored as a big-endian unsigned integer. The width (nuofidEts) of that integer is
indicated by the storage size, which may be 0, 8, 16, 32, oO@der storage sizes are not valid. The
storage size 0 indicates an empty string.

4.3.5 The Typebi nary

Objects of typebi nar y are stored as a tripléd, length bdatg).

id
This is the serialization of an arbitrary simple object eganting thed field of the binary object.
length
This is the length of the binary data, in bytes, stored as @hbitjan unsigned integer. The width
(number of bits) of that integer is indicated by the stordge,svhich may be 0, 8, 16, 32, or 64.
Other storage sizes are not valid. The storage size 0 irdiealength of 0 bytes.
bdata

lengthbytes of binary data.

4.3.6 The Typear r ay

The serialization of aar r ay object is stored as an alternating sequence of keys andsygiteceded by
the length of the array (i.e. the number of values).

(length key, valu, ...,keYength-1- ValuBength-1
The keys and values are stored as binary serializationswisiobjectslengthis stored as a big-endian,

unsigned integer. The width (number of bits) of that inteégendicated by the storage size, which may be
0, 8, 16, 32, or 64. Other storage sizes are not valid. Thagéosize O indicates an empty array.

4.3.7 The Typeexpr

An expression object is serialized to a expression congri@ And a number of operand objects. The
expression control byte determines the type of expressidritee number of operands.

Bits Description

7 Reserved, must be 0

6 ... 1 | The expression type, see below
1,0 The number of operands minus|1

The encoding used for the expression types is shown in table 1

The number of operands specified in the expression conttelrbyst match a defined simple object
expression type. Note that the number of operanifgis onés stored in the low two bits of the
expression control byte, i.e. the value O indicates 1 ogkrtue value 2 indicates 3 operands.

The storage size of an expression object is always 0. Otbexge sizes are not valid.

Index and Method Call Operands

The right operands of an index or method call operand is adweguired to by of typar r ay, as defined
in section 2.4 (page 7). If the operand is an array contaiexagtly one element, the elemesatiueis not
of typear r ay, and the elemerkeyis NIL , then that element may be encoded directly instead of
encoding and array containing that element.

21

Value | Operator Sign | Expression Type

0 + Plus (2 operands) or unary positive (1 operand)

1 - Minus (2 operands) or negation (1 operand)

2 * Multiplication (2 operands)

3 / Division (2 operands)

4 % Modulo (2 operands)

5 < Ordered comparison: less-than (2 operands) or approxilessethan
(3 operands)

6 <= Ordered comparison: less-or-equal (2 operands) or
approximate-less-or-equal (3 operands)

7 > Ordered comparison: greater-than,(2 operands) or
approximate-greater-than (3 operands)

8 >= Ordered comparison: greater-or-equal (2 operands) or
approximate-greater-or-equal (3 operands)

9 == Equality comparison (2 operands) or approximate equatityfgarison
(3 operands)

10 I=! Non-equality comparison (2 operands) or approximate reprakty
comparison (3 operands) or logical negation (1 operand)

11 && Logical AND (2 operands)

12 [] Logical OR (2 operands)

13 ?: Conditional (3 operands)

14 , Sequence (2 operands)

15 . Selection (2 operands)

16 [1 Index (2 operands)

17 O Method call (2 operands)

18 ~ Concatenation (2 operands)

4.3.8 The Typevr ef

An object of typevr ef is serialized to a tupld€ngth vdatg. Thevdataholdslengthbytes containing an
extended UNICODE string (see section 2.3 on page 7). Thegstepresents the reference string of the
variable reference. Nested variable references are mmeshby variable references in the extended

string.

Table 1: Expression Type Encoding

Thelengthis stored as a big-endian unsigned integer. The width (nuofdgts) of that integer is
indicated by the storage size, which may be 0, 8, 16, 32, 0O8der storage sizes are not valid.

22

5 Addresses

An addresss a simple object (or serialization of a simple object) esg@nting a path to a subobject nested
within a simple object. An address is an arbitrary simplesobj

5.1 Address Resolution

Address objects are applied to simple objects to selectabjedt of that object. Such a subobject may
either be a propper subobject or a symbolic subobject.

A propper subobjeabf a simple object is an object that is completely containgtiwthat object. A
propper subobject is actually a part of the containing dbjec

A symbolic subobjeds an object containing a propper subobject of an object. rAlmylic subobject is
typically the result of a resolution process where somespaithe address could not be resolved.

5.1.1 Address Resolution Operations
The following operations may be performed in an addresdutsn process:

Self Substitution
The address object not substituted (i.e. replaced by)tself

Object Substitution
The address object is substituted by the entire object teead is being applied to.

Quoted Substitution
A quoted substitutiors performed on aperandobject. The address is resolved to the operand.

Selection
A selection operatioiis performed on @ictionaryobject using &electorobject. If the dictionary
is of typear r ay, the elements of the array are processegwerse ordeuntil an element is found
whose key compares eqpalf a matching key was found, the address is resolved to &ssdc
value. If the key is not found or if the dictionary is not of yar r ay, then the address is resolved
to a selection expression object where the first operaneidittionary and the second operand is
the selector.

Index
An index operations performed on aequencebject using atfindex If the indexl is of typei nt ,
it is used to seledl 4 1)th element from the sequencel lis negative, then the index is relative to
the end of the sequence, i.e. it addresseslthel + 1)th element from the sequence, wheéris the
length of the sequence. An index substitution is performiadd only if the index is of typé nt
and the sequence is of typer ay, st ri ng, orexpr (expression).

The lengthL of the sequence and the exact definition oElemenbf the sequence depends on the
sequence type:

array
The lengthL of an array is the number of values held in the array. Herelemenbf the
array is a single value (i.e. not the key/value pair). Thenelet keys are ignored in an index
operation.

string
The length of a string is number of UNICODE characters andhiée references in the
extended string (a variable references is treated like@esldNICODE character). An
elementis a single UNICODE character or a variable refergwbich is represented by a

5The comparison of simple objects is covered in section 2gef8.

23

single ASCII character, a UTF-8 character sequence, or @meég&d string escape sequence.
In an index operation, a single UNICODE character or vagabference is represented by a
string object holding that character.

expr
The length of an expression is the number of operands. Anegleof an expression is a
single operand.

ThevalueE =1 forl > 00orE=L+1 forl < 0is called theeffective index EIf E is out of bounds
(i.e. eitherE < 0 orE > L), then the address is resolved\n. . If the sequence is not of a valid
sequence typeaf r ay, st ri ng, expr) or the index is not of typendex, then the address is
resolved to an index expression where the first operand isatpeence and the second operand is a
one element array containing the index.

Slice
Theslice operatioris similar to the index operation. A slice operation is parfed on asequence
using a pair of bounds called thwpper boundand thelower bound A slicing subsection is
performed if both bounds are of typat and the sequence is of typer ay orstri ng.

The lengthL of the sequence and the exact definition okssmenbf the sequence depends on the
sequence type:

array
The lengthL of an array is the number of values held in the array. Herel@amenbf the
array is a single value (i.e. not the key/value pair). Thenelet keys are ignored in an index
operation.

string
The length of a string is number of UNICODE characters anéhbsée references in the
extended string (a variable reference is treated like desidbllICODE character). An element
is a single UNICODE character or a variable reference, wiickpresented by a single
ASCII character, a UTF-8 character sequence, or an extestded escape sequence. In an
index operation, a single UNICODE character or variablenaice is represented by a string
object holding that character or variable reference.

Let| be the lower bound andithe upper bound. Theffective lower bound Bndeffective upper
bound Fare defined as:

0 ifl <—-L-1 0 ifJ<-L-1

E_ L+1+1 if —L-1<=1<0 F_ L+1+J if -L-1<=J<0
I if0<=I1<=L J if0<=J<=L
L if 1 >L L if J>L

The resolved object depends on the sequence type:

array
If the sequence is of typar r ay, the address is resolved to an array containing all elements
from the indexE (inclusive) to the inde¥ (exclusive). IfE > F, the address is resolved to an
empty array.

string
If the sequence is of typet r i ng, the address is resolved to a string containing all
UNICODE characters and variable references from the ifiti@rclusive) to the inde¥
(exclusive). IfE > F, the address is resolved to an empty string.

If the sequence is not of tya r ay or st ri ng or if at least one of the bounds is not of typet ,
the address is resolved to an index expression where thefiesand is the sequence and the
second operand is an array containing the lower bound ax id@®ad the upper bound at index 1.

24

5.1.2 The Resolution Process
The address resolution is a recursive process, performafptiowing steps:

1. Ifthe address is a variable reference (i.e. an objectpty ef), then a variable substitution step
is performed. If the substitution succeeds, the addresplaced by the resulting object. If the
substitution fails, therr ef object itself is used as the address.

2. Ifthe address is an object of typ&pr (expression), then the resolution function is applied ko al
operands of typexpr .

3. The resolution function (see below) is applied to the ltesfistep 2.

5.1.3 The Resolution Function
Theresolution functiornitself is described by the following set of rules, matchethia specified order:

Object Substitution
If the address isliL, it is resolved to the entire objekt resolved to the address object itself. This
resolution is called anbject substitution

Object Selection
An object selection substitutide performed if the address is a selection expression wirste fi
operand isNIL . A selection operatioiis performed (as defined in section 5.1.1). Hiaionaryis
the entire object the address is applied to ands#ectoris the second operand of the selection
expression.

Object Index
An object index substitutiois performed if the address is an index expression wherertte fi
operand isvIL , the second operand is an array holding a single elementhariaty of the array
elementiNIL. An index operations performed (as defined in section 5.1.1). Beguencés the
entire object the address is applied to andititkexis the value of the array element.

Object Slice
An object index substitutiois performed if the address is an index expression wherertte fi
operand isvIL , the second operand is an array holding exactly two elemantsthe key of both
array elements isliL . A slice operationis performed (as defined in section 5.1.1). Bequencés
the entire object the address is applied to,|tiveer bounds the value of the first array element, and
theupper bounds the value of the second array element.

Object Append
An append substitutiors performed of the address is an index expression wherergt@fierand is
NIL and the second operand is an empty arragliée operatioris performed (as defined in section
5.1.1). Thesequencés the entire object the address is applied to Jtweer bounds the length of
the sequence and tlhpper bounds equal to thdower boundeffectively specifying an empty slice
at the end of the sequence).

Combined Selection
A combined selectiois performed if the address is a selection expression wherérst operand is
notNIL . A selection operatiois performed (as defined in section 5.1.1). Thetionaryis first
operand and theelectoris the second operand of the selection expression.

Combined Index
A combined index selectiaa performed if the address is an index expression whererste fi
operand is10tNIL , the second operand is an array holding a single elementhariey of the array
elementiNIL. An index operations performed (as defined in section 5.1.1). Begquencés first
operand and thndexis the value of the array element of the second operand.

25

Combined Slice
A combined slice selectiaa performed if the address is an index expression wherersi®fierand
is notNIL, the second operand is an array holding exactly two elemantsthe key of both array
elements isviL . A slice operatioris performed (as defined in section 5.1.1). Bequencés first
operand of the index expression, tbever bounds the value of the first array element of the second
operand, and thepper bounds the value of the second array element of the second operand

Quoted Selection
A quoted selectiois performed if the address is an arithmetic positive exgioes(i.e. an operand
combined with a unary plus operator).quoted substitutiors performed as defined in second
5.1.1. Theoperandis the operand of the expression.

Self Selection
A self selectiornis performed if the address matches none of the patteresd li@giove. Aself
substitution operatiois performed as described in section 5.1.1.

5.2 Pure Addresses
A pure addresss an address that is one of the following:

1. An object of typeni | .

2. A selection expression where the first operand is a pureada@nd the second operand is not a
selection or index expression.

3. Anindex operation where the first operand is a pure ad@dm$she second operand is an array
holding one or two object of typient .

A pure address resolutiois a restricted address resolution process that yieldsreitipropper subobject
of the object it is applied to or an error indicatfon
5.3 Considerations and Examples

Addresses are typically applied to an object specified dlsegv A typical application of addresses is an
API’ of a programming library providing access to objects nestedher objects. Such an API might
define a method of the class representing a simple objectweticepts a text serialization of an address
(using theexpr essi on context). For example:

SCbj ect x, vy;

obtai n_an_i nstance_of Sbject();
x.get ("N L. prefs. (${ENV}. USER). editor");

X
y

We'll assume that the application has set up a variableeatar substitution mechanism that substitutes
“${ ENV} " with an (associative) array object representing the pge@avironment. In fact, thget ()
method could automatically prepend the strifg L" if the argument starts with a dot or bracket. In this
case, the address could be abbreviated to

y = x.get(".prefs. (${ENV}. USER).editor");

To address an element value from an associative array wierdeément key is itself an address, the
selection key has to be quoted. The following address resdtvthe string FOO' (represented as a text
serialization inexpr essi on context):

6What that error indication looks like depends on the appticaor programming library handling the restricted addnessolution.
7 Application Programming Interface.

26

[(NIL.keyl) = FOO (NIL[42]) = BAR].(+ NI L.keyl)

This example also demonstrates that the very left operaad afidress does not have toNie . In fact,
theNIL reference to the object the address is being applied mayaappdtiple times in the address, or
not at all. Here’s an example where the reference appears somewhere nested in the address object
(again written in Java style pseudo code):

X
y

new SChj ect (1);
x.get ("[FOO, BAR, FIZZLEJ[NIL]");

The value ofy will be an object representing the strih@AR" .

5.4 UNICODE Normalization

Some simple objects hold UNICODE strings. These are all @rmbjects of typest ri ngs as well as all
objects associated with a class hame. These UNICODE stiegstored as sequences of numbers
resembling UNICODE code points. These code pointsatémited to 16 bits.

5.4.1 Surrogate Pairs

UNICODE code points beyorixf f f f can be represented as pairs of code points b8boff f f . The
code points making up such pairs are caedogatesthe pairs are callesurrogate pairs The first
surrogate in a pair is called thégh surrogatethe second is called tHew surrogate Surrogate pairs are
used in the UTF-16 encoding to represent code points théd adlierwise not be represented in 16 bits.

A simple objecinevercontains surrogates. All matching pairs of surrogateseselved and all
unmatched surrogates are silently discarded.

5.4.2 Normalization

Some characters have different UNICODE representatiogsdecented characters). Simple objects
representing the same character string with differentazttar representations willbt compare equal. To
avoid this problem, an application may

a) use a normalization convention. That means that theagtjgh makes sure that all strings are
normalized whenever a simple object is created.

b) install a normalization callback. A programming libratyould provide a hook for installing a
string normalization callback function.

The UNICODE standard defines sevaral string normalizations

27

A Serialization Examples

This section contains a collection of serialization exaasgbr text and binary serialization. Binary data
will be represented commented as hexdumps.

A.1 Text Serialization Examples

A.2 Binary Serialization Examples

28

B Expression Semantics

This section defines the expression semantics implemegttetliefault environment. The expression
semantics resembles the typical operator semantics ofgaroging languages like C or Java.

Some operands examine the truth value of an operand. Tlevilite is defined as follows:

FALSE
If the objectisNIL, FALSE, O (zero of type nt), 0. O (zero of typef | oat), an empty string, a
binary object (typéi nar y) with a data body length of 0, or en empty array (tygre ay).

Undefined
If the object is of typeexpr orvr ef .

TRUE
For all other objects.

The expression semantics defined in this section are impigtén the default class environment of the
standard environment (see section C.1 by overridin@treessEnv: : eval () method (or by
implementing theeval () callback function, if the programming environment doessugiport
inheritance). As a consequence, the expression semast@s bre applicable only to expression objects
where the class name of the first operand is associated weittietfault class (i.e. there’s no specific class
for the class name or the object has no class name).

Note that the class environment used for evaluating an ssjane object is derived from the class name of
the first operand, not the class name of the expression itb#ie expression object has a class name, that
class name is applied to the object resulting from the etialna

B.1 Arithmetic Semantics

For arithmetic expressions timv: : eval () method performs a recursive evaluation of all operands
before the operator is examined. Arithmetic expressioagapressions of the following types:

EXPR_POS, EXPR_NEG, EXPR_NOT, EXPR_PLUS, EXPR_M NUS, EXPR_MJL, EXPR DI V,

EXPR_MOD, EXPR_CAT, EXPR_LS, EXPR_LE, EXPR_GT, EXPR_GE, EXPR_EQ
EXPR_EQ APPROX, EXPR_NE, EXPR_NE_APPROX, EXPR_AND, EXPR_OR.

B.1.1 EXPR_PGCS (Unary positive operator)

If the operand is of typ&ool , it is promoted to typé nt whereFALSE is mapped td® andTRUE is
mapped tdl.

B.1.2 EXPR_NEG (Unary negation operator)

If the operand is a number or a boolean (i.e. of thp®! ,i nt, orf | oat), it is negated numerically.
For booleansALSE is replaced by) andTRUE is replaced by 1.

B.1.3 EXPR_NOT (Unary logical negation operator)

If the operand is not of typexpr orvr ef , the expression is replaced by the negation of the truthevalu
of the operand.

B.1.4 EXPR_PLUS (Binary plus operator)

The expression is evaluated if one of the following condisibolds:

29

1. If both operands are numbers (i.e. of type orf | oat), the expression is replaced by the sum of
both numbers. If both operands are of typ# , the result will be of type nt , else the result is of
typef | oat .

2. Both operands are of typs r i ng. The expression is replaced by the sequential concaterattio
both strings. Note that variable reference are resolvedwsbéh operands are evaluated recursively.

3. The first operand is of typer r ay, the second operand is not of tyaer ay. The expression is
replaced by an array derived from the first operand, whergyargdue is replaced by the evaluated
EXPR_PLUS-expression created from the original array element vataktae second expression
operand.

Example:

([2, key: a] + 1) isevaluatedty 3, key: (a + 1)]

4. The first operand is not of tyge r ay, the second operand is of typer ay. The expression is
replaced by an array derived from the second operand, wherg ealue is replaced by the
evaluatedEXPR_PLUS-expression created from the first expression operand anariinal array
element value.

Example:

(1 + [key: 2, a]) isevaluatedtpkey: 3, (1 + a)]

5. Both operands are arrays of equal length. The expressi@placed by an array derived from the
first operand where all keys are taken from the first operaddtamvalues are replaced by
evaluatedEXPR_PLUS-expressions created from positionally correspondingnele values.
Example:

([keyl: 1, 2, a, b] + [key2: 3, c, 4, d])
is evaluated to

[keyl: 4, (2 + c), (a + 4), bd]

Note that the array evaluations are preformed recursiusipg the class environment matching the
respective expression. An array may contain element valithsa class matching a class environment
implementing different evaluation semantics.

B.1.5 EXPR_M NUS (Binary minus operator)
The expression is evaluated if one of the following condisibolds:

1. If both operands are numbers (i.e. of type orf | oat), the expression is replaced by the
subtraction of both numbers. If both operands are of type, the result will be of type nt , else
the result is of typé | oat .

2. The first operand is of typer r ay, the second operand is not of tyaer ay. The expression is
replaced by an array derived from the first operand, whergyargdue is replaced by the evaluated
EXPR_M NUS-expression created from the original array element vahaethhe second expression
operand.

Example:

([2, key: a] - 1) isevaluatedtpl, key: (a - 1)]

3. The first operand is not of tye r ay, the second operand is of typer ay. The expression is
replaced by an array derived from the second operand, wkerg galue is replaced by the
evaluatedEXPR_M NUS-expression created from the first expression operand anakitjinal array
element value.

Example:

30

(1 - [key: 2, a]) isevaluatedtpkey: -1, (1 - a)]

4. Both operands are arrays of equal length. The expressiepiaced by an array derived from the
first operand where all keys are taken from the first operaddtamvalues are replaced by
evaluatedEXPR_M NUS-expressions created from positionally correspondingel# values.
Example:

([keyl: 1, 2, a, b] - [key2: 3, c, 4, d])
is evaluated to
[keyl: -2, (2 - ¢), (a- 4), (b- d]

Note that the array evaluations are preformed recursiuslyg the class environment matching the
respective expression. An array may contain element valithsa class matching a class environment
implementing different evaluation semantics.

B.1.6 EXPR_MJL (Multiplication operator)
The expression is evaluated if one of the following condisibolds:

1. If both operands are numbers (i.e. of type orf | oat), the expression is replaced by the
subtraction of both numbers. If both operands are of typie, the result will be of typeé nt , else
the result is of typé | oat .

2. The first operand is of typar r ay, the second operand is not of typer ay. The expression is
replaced by an array derived from the first operand, wherg/eradue is replaced by the evaluated
EXPR_MUL-expression created from the original array element vahgetlhe second expression
operand.

3. The first operand is not of tye r ay, the second operand is of typer ay. The expression is
replaced by an array derived from the second operand, wkerg ealue is replaced by the
evaluatedEXPR_MJL-expression created from the first expression operand anarihinal array
element value.

4. Both operands are arrays of equal length. The expressiepiaced by an array derived from the
first operand where all keys are taken from the first operaddtamvalues are replaced by
evaluatedEXPR_MJL-expressions created from positionally correspondingetd values.

See section B.1.5 for examples.

B.1.7 EXPR_DI V (Division operator)
The expression is evaluated if one of the following condisibolds:

1. If both operands are numbers (i.e. of type orf | oat), the expression is replaced by the
guotient (division) of both numbers. If both operands argyp€i nt and the second operand is not
0, the result will be of typé nt , else the result is of typiel oat .

2. The first operand is of typar r ay, the second operand is not of typer ay. The expression is
replaced by an array derived from the first operand, whergyargdue is replaced by the evaluated
EXPR_DI V-expression created from the original array element vahgetlae second expression
operand.

3. The first operand is not of tye r ay, the second operand is of typer ay. The expression is
replaced by an array derived from the second operand, whierg ealue is replaced by the
evaluatedEXPR_DI V-expression created from the first expression operand anatitjinal array
element value.

31

4. Both operands are arrays of equal length. The expressiepiaced by an array derived from the
first operand where all keys are taken from the first operaddtamvalues are replaced by
evaluatedEXPR_DI V-expressions created from positionally correspondingeld values.

See section B.1.5 for examples.

B.1.8 EXPR_MOD (Modulo operator)
The expression is evaluated if one of the following condisibolds:

1. If both operands are numbers (i.e. of type orf | oat), the expression is replaced by the
division residue of the first number divided by the secondteNbat floating point numbers are
allowed for this operation. If both operands are of typ¢ and the second operand is 1igtthe
result will be of type nt , else the result is of typkl oat . If the second operand &or 0. 0, the
result will benan (floating point NAN, “Not A Number”).

2. The first operand is of typer r ay, the second operand is not of tyaer ay. The expression is
replaced by an array derived from the first operand, wherg/eradue is replaced by the evaluated
EXPR_MOD-expression created from the original array element vahgetlae second expression
operand.

3. The first operand is not of tye r ay, the second operand is of typer ay. The expression is
replaced by an array derived from the second operand, whierg ealue is replaced by the
evaluatedEXPR_MOD-expression created from the first expression operand anatitjinal array
element value.

4. Both operands are arrays of equal length. The expressiepiaced by an array derived from the
first operand where all keys are taken from the first operaddtamvalues are replaced by
evaluatedEXPR_MOD-expressions created from positionally correspondingiel# values.

See section B.1.5 for examples.

B.1.9 EXPR_CAT (Concatenation operator)
The expression is evaluated if one of the following condisidiolds:

1. Both operands are of tye r ay. The expression is replaced by the concatenation of bodlysrr
2. Both operands are strings. The expression is replacduetgoncatenation of both strings.

3. One of both operandsigL . The expression is replaced by the operand that isinot

B.1.10 EXPR _LS (Less-than comparison operator)

The expression is evaluated if one of the following condisitiolds: If both operands are comparable (see
section B.1.20), the expression is replaced by a booleattiresfrom a “less-than” comparison.

B.1.11 EXPR _LE (Less-or-equal comparison operator)

If both operands are comparable objects (see section B, h20expression is replaced by a boolean
resulting from a “less-or-equal” comparison.

32

B.1.12 EXPR _GT (Greater-than comparison operator)

If both operands are comparable objects (see section B, h20expression is replaced by a boolean
resulting from a “greater-than” comparison.

B.1.13 EXPR_GE (Greater-or-equal comparison operator)

If both operands are comparable objects (see section B, h20expression is replaced by a boolean
resulting from a “greater-or-equal” comparison.

B.1.14 EXPR_EQ(Equals comparison operator)

If both operands are comparable objects (see section B, 1h20expression is replaced by a boolean
resulting from a “equal” comparison.

B.1.15 EXPR_EQ_APPROX (Equals approximate comparison operator)

If the first two operands are comparable objects (see seBtib20) and the third operand is a number, the
expression is replaced by a boolean resulting from a “apprate-equal’ comparison (see section B.1.21
on approximate comparisons).

B.1.16 EXPR_NE (Not-equal comparison operator)

If both operands are comparable objects (see section B, 1h20expression is replaced by a boolean
resulting from a “not-equal” comparison.

B.1.17 EXPR_NE_APPROX (Not-equal approximate comparison operator)

If the first two operands are comparable objects (see seBtib20) and the third operand is a number, the
expression is replaced by a boolean resulting from a “npt@pmate-equal” comparison (see section
B.1.21 on approximate comparisons).

B.1.18 EXPR_AND (Logical AND operator)

If both operands have a defined truth value (i.e. are not & éypr orvr ef), the expression is replaced
by the logical AND of the truth values of both operands. Intcast to most programming languages, this
operator has no shortcut semantics, i.e. both operandsaetedeforethe operation is performed.

B.1.19 EXPR_OR/(Logical OR operator)

If both operands have a defined truth value (i.e. are not & éypr orvr ef), the expression is replaced
by the logical OR of the truth values of both operands. In @sttto most programming languages, this
operator has no shortcut semantics, i.e. both operandsaetedheforethe operation is performed.

B.1.20 Comparable Objects

In an ordered comparison (“less-than”, “less-or-equajtegater-than”, “greater-or-equal”), two objects
are comparable if

e both objects are numbers (i.e. of typet eger orf | oat),

33

¢ both objects are of typgt r i ng, or

¢ both objects are arrays of equal length where all keysiareand all corresponding pairs of
elements are comparable.

In an ordered approximate comparison (“approximatedleas*, “approximate-less-or-equal”,

“approximate-greater-than”, “approximate-greateequal”) or an approximate equality comparison
(“approximate-equal”, “not-approximate-equal”), twojetts are comparable if

e both objects are numbers (i.e. of typet eger orf | oat),

e both objects are array where all keys aire and all corresponding pairs of elements are
comparable.

In an equality comparison (“equal”, “not-equal”), any twhjects are comparable.

For ordered comparisons, numbers are compared by theirmaahealue, strings are compared lexically
by the numerical order of the UNICODE code points, arraysamapared recursively and the result is the
logical AND of the results of the element comparisbns

B.1.21 Approximate Comparisons

An approximate comparisons is an operation with three apkrarhe first and second operands are
compared using a fuzz value specified in the third operand fiitz value causes the result totruE,
even if the tested condition is missed by an amount smalleqoal to the specified fuzz value. (Note that
the EXPR_NE_APPROX is the exact opposite &XPR_EQ_APPROX, that’s why it is called
“not-approximate-equal” instead of “approximate-notsalj.) Approximate comparisons can not be
applied to strings.

B.2 Programmatic Semantics

The following expression types apgogrammatic expressionsor programmatic expressions, the
evaluation of operands may be deferred or skipped depewndingher operands.

EXPR_COND (Conditional operator)
A conditional expression is always replaced by an evaluaxpdession. The first operand of a
conditional expression is interpreted as a truth valuéndfttuth value of the first operand is
undefined (i.e. the operand is of typeef or expr), then the operand is evaluated once and
checked again. Depending on the truth value, one of theviolip actions is taken:

TRUE
The second operand of the conditional expression is exadwaatd the expression is replaced
by the result of that evaluation. The third operand is didedmwithout being evaluated.

FALSE
The third operand of the conditional expression is evatliated the expression is replaced by
the result of that evaluation. The second operand is disdarithout being evaluated.

Undefined
The conditional expression is replaced with a conditiomptession where the first operand is
replaced with the evaluated first operand and the seconchaddperand are kept. The class
of the expression (if present) is kept.

8As ca consequence, the result of a comparison of two empiysais alwaysT RUE.

34

EXPR_SEQ(Sequence operator)
A sequence expression is always replaced by an evaluateelssign. The first operand of the
sequence expression is evaluated and the result is dis€aiittee second operand is also evaluated
and the sequence expression is replaced with the resuldbévhluation.

EXPR_SEL (Selection operator)
A selection expression is always replaced by an evaluategkssion. The selection operator is
evaluated by performing a selection operation as defineédtics) 5.1.1 “Address Resolution
Operations” on page 23. Tlikictionaryis the result of the evaluation of the first operand, the
selectoris the result of the evaluation of the second operand. Tleeseh expression is replaced
with the result of the selection operatidh.

EXPR_|I NDEX (Index operator)
An index expression is evaluated only if the second opersiad iarray with all keysiiL holding
exactly one or exactly two elements.

If the second operand is a one element array, the index esipreis evaluated by performing an
index operation as defined in section 5.1.1 “Address Resal@perations”. Thesequencés the
result of the evaluation of the first operand expressionpkaced with the result of the index
operation, theéndexis the result of the evaluation of the array element of theséoperand. The
index expression is replaced with the result of the indexatmn.

If the section operand is a two element array, the index egwa is evaluated by performing a slice
operation as defined in section 5.1.1 “Address Resoluticer@jons”. Thesequencés the result of
the evaluation of the first operand, tosver bounds result of the evaluation of the first array
element of the second operand, thgper bounds the result of the evaluation of the second element
of the second operand. The index expression is replacedhwgtresult of the slice operation.

EXPR_CALL (Call operator)
A call expression is evaluated only if the first operand islact®n expression and the second
operand is an array- A call operation is performedithoutprior evaluation of the second operand.

The result of the evaluation of the first operand of the firgtrapd of the call expression (i.e. the
first operand of the selection expression) is calledaingetof the call expression; the result of the
evaluation of the second operand of selection expressicalled theselectorif the call expression;
the (unevaluated) second operand of the call expressiailésicheargument arrayof the call
expression.

The call expression is evaluated using @essEnv: : cal | () method of the class environment
associated with the target of the call expression. If thgetdhas no class name or no class
environment matches the class name of the target and theoemént object provides a default
class environment, that default class environment is usesdluate the call expression. If no class
environment matches the target and no default class emagnhis available, the call expression is
replaced by call expression where the first operand of tleeteh expression is replaced with the
target.

9Note that the evaluation may have a side effect.

10)f the selection itself should be an expression, gt e method from the standard default class (see section C.1heased
to quote the expression.

1By definition, the second operand of a call expression isysved typear r ay .

35

C Standard Object Classes

The standard environment provides class environmentsdet af class names and a default class
environment.

All of the class environments below implement tleassEnv: : cal | () method. Every call method
dispatches a number of method names. Ifdhél () method is called with a non-string selector or an
unrecognized selector, or if the argument array does nathmhe formal parameter definition of the
dispatched method, theal | () method returns a call expression equivalent to the callesgion being
evaluated, but with a clear class nafd=or every class, a list of method prototypes is defined.

C.1 The Standard Default Class

The standard default class environment implement€ttessEnv: : eval () and
Cl assEnv: : cal | () methods. Theval () method implements the standard expression semantics
defined in appendix B.

The standard default class environment defines the follpwiathods:

guote(object)
The method returns the specified paramet#ectas is. The called object is not evaluated and is
typically specified asiiL . The purpose of this method is to prevent an expression tioen being
evaluated (for example for specifying an expression asext®lin a selection operation). Example
(in expr essi on context):

$(exprdict).(nil.quote(($a + $b)))

The expressio($a + $b) is used as the selector in the selection operation perfowhed the
selection expression is evaluated.

C.2 Theti nme Class Environment

Thet i me class represents an absolute time and date informatiolanices of the i ne class use the
ISO 8601 format for representing a time in a serialized fdfor. living objects, either a string
representing (in ISO format) or an epoch representatiosésl u

Epoch Representation
The time is represented as the number of milliseconds sheefoch date January 1st 1970,
00:00 UTC?3

ISO 8601 Representation
The time is represented as a string in ISO 8601 format. Antaefmition of the time format is
given in section C.2.1.

Thed assEnv: : pack() method converts time objects in epoch representation tdé&@at!* The

C assEnv: : unpack() method converts an ISO time representation as defined ilmseci?2.1 to
epoch representation. Tk assEnv: : eval () method is overridden to implement simple arithmetic
on time objects (as defined in section C.2.4).

12)f the call expression being evaluated is associated wittassmame, that class name will be attached to the resullijegto
Hence, if the call can not be dispatched, a call expressiaaleq the expression being evaluated is created by theati@iu

13This is equivalent to the Java time representation.

14Complete calendar date representation as defined in sécéaha) of the ISO 8601:2000 standard, using UTC represemta
(Z suffix).

36

C.2.1 The ISO 8601 Time and Data Format

The string representation for dates used bytthe®e class environment uses a subset of the

ISO 8601:2000 standard. An instance of a time object is eedtad a combination of an ISO date and an
ISO time of day as defined in section 5.4 of the standard. Téfimition makes no assumptions about
extra agreements about the time representation. Trunaatedxpanded representations are not valid.
Decimal fraction notations for hours, minutes, or secomdsaiowed. The fraction should be separated
by a comma, but a period must also be accepted by the decoder.

Encoding the ISO Format
The encoder of the ISO format (as implemented byGhassEnv: : pack() method) must
generate @xtended completalendar date representation as defined in section 5.4f1fs o
ISO 8601:2000 standard, using the UTC time. If the time carbeagepresented with 1 second
precision, the decimal fraction part of the second is sepdray a comma. For example, the 27th of
August 2002, 16:47:00 and 834 milliseconds UTC is represtas:

2002- 08-27T16: 47: 00, 834Z
The same time without the milliseconds fraction is représztas:
2002- 08-27T16: 47: 00Z

Decoding the ISO Format
The decoder must be capable of decoding a time and date stirigrming to the ISO 8601:2000
standard, section 5.4 to an epoch representation, exgadincated time and/or date
representations (as defined in sections 5.2.3.3 and 5c#.1hé standard) and expanded date
representations (as defined in section 5.2.3.4 of the stdhdéote that time of day representations
with reduced precision and local time representations aðthl fraction representations must be
decoded as defined in the standard.

Examples:
20020827T1647Z Basic representation with reduced precision in the timeagf d
198510271015 Local time in ordinal representation (calendar day 102 ef th

year 1985).

1985- WL5-1T10: 15+04 | Extended week date (monday of calendar week 15), time of day
with reduced precision, UTC + 4 hours.

C.2.2 The Epoch Representation

The epoch representation encodes the (positive or nejativeber of milliseconds since the 1st of
January 1970, 00:00 midnight UTC. The calculation is dona tormula ignoring leap seconds, leap
years are accounted for as defined in official standardse(that including leap seconds in the
conversion folmula is not feasable, since it is hardly pgaesio predict for which years the IERS
(International Earth Rotation Service) will announce gleacond.)

Note that implementations based on a POSIX.1 compliantamphtation of the standard C library
functionsnkt i me(),gnti me(),andl ocal ti me() will not handle leap years correctly for dates
before the year 1901 and after the year 2099.

C.2.3 Methods of thet i ne Class

Thet i me class environment provides methods for creating, comggréind evaluating time objects.
Some of the methods use an array representation of a timg rdjriesentation is inspired by (but not
compatible to) thest r uct t mof the standard C library. This representation is a (claslarray with
the following fields:

37

year
The year number. This should be an integer holding the yrear.

nont h
The month, represented as an integer number in the rang@](January is represented by the
number 1, December is represented by the number 12). Theerdimbpresents an undefined
month.

week
The calendar week. The first calendar week (week number ¢ iwéek containing the 4th of
January of the specified ye¥rThe number 0 represents an undefined week.

yday
The day of the year. The 1st of January is day 1. The numbenr@septs an undefined day of the
year.

nday
The day of the month, represented an integer in the rangd]1The number O represents an
undefined day of the month.

wday
The day of the week, represented as an integer in the rangé [Monday is day 1 and Sunday is
day 717 The number O represents an undefined day of the week.

hour

The hour of the day. This is an integer in the range [0.184].
mn

The minute of the hour. This is an integer in the range [0..59]

sec
The second of the minute. This is an integer in the range(p%

nsec
The millisecond of the second. This is an integer in the r4@g@99].

tz
The local timezone represented as a difference to UTC, fipeai hours. The valusiL represents
local time.

tzmn
The local timezone represented as an additional offset 6, dpecified in minutes. This is an
integer in the range [0..5%.

Note that representations of week dates and calendar&dhites are not compatible. The days 1st of
January through 3rd of January may belong to the last catemeizk of the previous year, so the week
date and the calendar date representation of the day mayreksan the year number. Hence, a time array
may either represent a calendar/ordinal date or a week d#te. fieldweek is defined (non zero), then

the fieldsnont h, nday, andyday mustbe set to undefined (value 0).

The following methods are provided by the ne class environment:

15Note that in contrast tet ruct t mof the standard C library, the specified numbendsinterpreted relative to 1900.
16A week starts with Monday and ends with Sunday.

1"Note that in contrast tet ruct t mof the standard C library, the value Oristan alternate representation for Sunday.
18nour =24, m n=0, sec=0, nsec=0 is a valid encoding for midnight.

19The valuesec=60 is required to encode leap seconds.

20The 1SO 8601:2000 standard allow timezone offsets with teimgcuracy.

38

createtm)
This method discards the called object (typicdltyi e} ni |) and interprets the parameteras a
time array. The time array specified through timparameter should hold a combination of
elements uniquely specifying a point in time. If any of théd&hour , m n, sec, nsec,t z, or
t zm n are missing, they are considered to have the integer ¥al@¥ the other fields, one of the
following combinations must be present:

e year,nont h, nday (calendar date representation).

e year,yday (ordinal date representation).

e year,week, wday (week date representation).
The fields are checked in the order listed above. If unneedktsfare specified, these fields are
ignored. For example, if thgear , yday, wday, andweek fields are present, theday andweek

fields are ignored, since the ordinal representation tatexsegdence over the week date
representation.

The method returns a time object in epoch representation.
split(tz = NI L, weekdate= FALSE)

Split a time object to array representation. The paranieiera time array containing the requested
time zone { z and/ort zni n fields). If the parametdr is NIL, local time is assumed.

The parameteweekdates interpreted as a truth value (as defined in appendix Byekkdates
TRUE, the date is decoded to a week dateyéekdatés FALSE, the date is decoded to a
calendar/ordinal date. The fieldlay is set independed from theeekdatearameter.

The function returns a complete classless time array asedeéibove.
encodefz = NI L)

Encode a time object using the ISO representation. The pHeatnis a time array containing the
requested time zoné ¢ and/ort zmi n fields). If the parametdris NIL, local time is assumed.

decode()
Decode a time object from ISO representation to epoch reptaton.

C.2.4 Time Expression Evaluation

Expressions including time objects can be used to perfamplsi arithmetic on time objects (addition and
subtraction of deltas, computation of time deltas, ordaretlequality comparisons of time objects).
Whenever a time delta is computed, it is specified as a flogiiigt number of classi ne del t a.

For time arithmetic, a time delta may be specified as a nuntbeagured in seconds) or a string. If a delta
is specified as a floating point number, the number is rounaletlitisecond precision. If the delta is
specified as a string, it is interpreted as follows:

1. Adelta specification is a (possibly empty) list of timetdadlements, separated by whitespace
and/or commas.

2. Atime delta elements is an integer number followed by aiapl unit specifier. The integer
number may be written in decimal (starting with a non-zegjtjlioctal (starting with a zero digit),
or hex (starting with the character sequefizeor 0X).

Unit specifiers are case-insensitive, i.8” fs equivalent to 'S”. The following unit specifiers are
recogized:

nms The delta is specified in milliseconds.

s The delta is specified in seconds.

39

m The delta is specified in minutes.
h The delta is specified in hours.

d The deltais specified in days.

If a delta element does not contain a unit specifier, secomrdassumed.
The following expression types are recogized by the timéuation:

EXPR_PLUS (Time and delta addition)
The evaluated second operand is interpreted as a time @eltdisation, either as a number or as a
string. The result is a time object representing the redulietime plus delta addition. If the delta
is specified as a number, it may be negative. If the seconcogés not a number or string holding
a valid time delta specification, the expression is not extali.

EXPR_M NUS (Time and delta subtraction, time delta)
If the evaluated second operand is a number or string noasstl ne, the result is a time object
representing the result of the time minus delta subtractidhe second operand is of class e,
the difference between the two time objects is computedtanmed as a floating point number of
classti me del t a (measured in seconds, up to a precision of milliseconds).

EXPR_LS (Time comparison earlier-than)
If both operands are of type e, the expression is evaluated to a boolean representinshé of
an “earlier-than” comparison.

EXPR_LE (Time comparison earlier-or-equal)
If both operands are of type e, the expression is evaluated to a boolean representinshé of
an “earlier-or-equal” comparison.

EXPR_GT (Time comparison later-than)
If both operands are of typge e, the expression is evaluated to a boolean representinshé of
an “later-than” comparison.

EXPR_GE (Time comparison later-or-equal)
If both operands are of typge e, the expression is evaluated to a boolean representinshé of
an “later-or-equal” comparison.

EXPR_EQ(Time comparison equal)
If both operands are of type e, the expression is evaluated to a boolean representinshé of
an “equal” comparison.

EXPR_NE (Time comparison not-equal)
If both operands are of typge e, the expression is evaluated to a boolean representinshé of
an “not-equal” comparison.

Note that both operands are evaluated for all operatiorid ore objects.

40

D Simple Objects API

This section defines a language neutral inteface for simgikcoAPIs. The APIs are defined in a syntax
simple to that of thdavaprogramming language. The API consits of two parts, a set of
functions/methods operating on simple object serialiratiand a set of methods operating on instances of
a simple object class, holding an in-memory representati@simple object. Instances of such a simple
object class are calledintime objects

A programming library typically provides a set of hooks fatlback functions/methods. These callback
hooks should not be held in a global and static locationebstobjects instanciated from an environment
class should be used to hold all these callbacks. Such slgeeicallecnvironment objects

Every runtime object should reference such an environnigetta All methods operating on runtime
objects and accessing the environment should be provideginariants: one using the environment
object referenced by the runtime object and one using amamwient object specified by the caller. In
languages supporting default values for method paraméiese two variants may be implemented using
a defaulted parameter.

D.1 The Environment Class

Theenvironment class the base class for environment objects. In an objectitateenvironment, the
environment object would be an instance of a class derived the environment class. The environment
class provided by the simple objects library would providéadlt implementations of the callbacks
methods.

The environment class provided by the API should be equiN&tethe following clas&nv:

cl ass Env

{
static final int MSG ERR = 1
static final int MSG WARN
static final int MSG_ I NFO
static final int MSG DEBUG = 4;

2;
3,

bool error;

int message(int nmsgType, string nsglD,
Di cti onary nsgArgs, string nessage) { return -1; }

string str(SCbject object) { return null; }
SCbj ect vref(string ref) { return null; }
string vref_str(string ref) {

SCbj ect object = vref(ref);

if (object '= null) return str(object); else return null;

}
Di ctionary cl assEnv;
/1

final void add_cl ass(C assEnv cl assEnv);
final CasskEnv find_class(string nane);

}s

The methods implemented in the actual environment claggadfirom Env should implement the
following functionality:

41

int message(it msgTypestring msglD, Dictionary msgArgsstring message

Process a message of the specified tyggType The message should be sent to a logging facility
and/or terminal.

Parameters:

int msgType
The message type. This is one of the following constants:
M5G_ERR
An error message. An operation failed due to an error canditi
M5G_WARN
A warning message.
M5G_| NFO
An informational message. Info messages may be discardegiioduction environment.
M5G_DEBUG
A debugging message. Debug messages should be discardeiiugtion environment.
string msglID
A message identification string. A list of message identificastrings is given in section D.5.
Message IDs are language neutral and may be used for iriteralization.
Dictionary msgArgs
A set of key/value pairs holding additional information abthe event. The keys are all plain
ASCII strings and the values are serializations of simpjeab.
string message

A short message text in English. This message text shoulgicoall relevant information
about the event.

The return value indicates if a default message proceshimgié be performed. The default

message processing will write errdf§G_ERR) and warning ¥5G_WARN) messages to the
standard error of the process and discard all other messages
Return values:

-1
Perform a default messages processing.

Message processed, OK. (No default processing is perfajmed

All other return values are reserved and should not be retlby the implementation of
nessage() .

string str(SObjectobjec)
Create a UNICODE UTF-8 string representation of a runtimjeatt{the returned string shoufubt

be an extended UNICODE string). The return vatuge | indicates, that a default string
representation should be used.

SObjectvref(string ref)
Resolve a variable reference. The parametespecifies the reference string. The return value

nul | indicates that the variable reference should not be subesditi.e. the variable reference is
kept unchanged.

string vref_strgtring ref)
Resolve a variable reference in an UTF-8 encoded UNICOD#&gsfnotan extended string). The
method implementations defaults to a combination ofwthef () andstr () methods.

The following fields are defined in the environment class:

42

M5G_ERR, M5SG_WARN, MSG_| NFO, MSG_DEBUG
Constants for thensgTypgarameter of theessage() method (see above).

bool error
This flag is set when theessage() method is called with thenxsgTypeset toM5G_ERR.

Dictionary classEnv
If not nul | , theclassEnuictionary holds a set of class environment objects (setosed.2). The
dictionary maps the class nametagsfield of a simple object) to an instance of a class derived
fromCl assEnv.

Note: This field should be treated as a read-only instance variabém if a specific implementation
allows modifications t@lassEnv

The class environments of an environment object are managied the following methods. These
methods are provided by the simple object implementatiainanst not be overridden in derived classes.

void add_classtlassEnvclassEny
Add a class environment to an environment object. If thesctesme of the specified class
environment is not set or empty, the specified class enviemiis installed as the default class
environment.

ClassEnvclassEnv
The class environment to be added to the environment object.

ClassEnvfind_class§tring name
Find the class environment associated with the specifiexs clame. If no class environment with
the specified name is found and if a default class environmémstalled, the default class
environmentis returned. The method retunns | if the name is not bound and no default class
environment is installed.

String name
The class name of the requested class environment.

In a programming environment not supporting classes argtitamce, the environment objects should be
implemented as a collection of function objects (e.g. fiomcpointers in C) with a defined null-value
indicating the default behaviour.

D.2 The Class Environment Class

Theclass environment class the base class for objects defining simple object cla3$esse instances
are referenced by thdassEnwfield of an environment object.

The class environment class provided by a simple objectssA&lild be equivalent to the following class:
cl ass C assEnv
{ string nane;
SChj ect pack(SOhj ect object, Env env = null) { return object; }
SCbj ect unpack(SCbj ect object, Env env = null) { return object; }

SCbj ect cal | (SObj ect object, SObject nethod,
Soj ect args, Env env = null) { return SObject.NIL(); }

SCbj ect eval (SObj ect expression) { return null; }

43

The field nameahameholds the name of the class,mul | if the class environment applies to all objects
without a matching class environment. The methods impléetkin the actual environment class derived
from G assEnv should implement the following functionality:

SObject pack@Objectobject Env env = nul |)
This method is called before the object is serialized.
Parameters:

SObjectobject
The simple object being serialized.

Env env(default valuenul 1)
The environment object for the operation. This environnodaject should be passed to all
operations performed on the object. A null-pointer (vaiue |) indicates that the default
environment should be used.

The return value is the object transformed for serializatibno transformation is required, the
function should return the objeobject(this is the default behaviour for all objects).

SObjectunpackGObjectobject Envenv = nul |)
This method is called after the object is deserialized.
Parameters:

SObjectobject
The simple object being deserialized.

Env env(default valuenul | ')
The environment object for the operation. This environnodaject should be passed to all
operations performed on the object. A null-pointer (vaiug |) indicates that the default
environment should be used.

The return value is the object transformed after deseatdin. If no transformation is required, the
function should return the objeobject(this is the default behaviour for all objects).

SObjectcall(SObjectobject string method SObjectargs Env env = nul |)
This method implements method calls on simple objects ofléfimed simple object class.
Parameters:

SObjectobject
The simple object instance the method is called on.

SObject method
The method identifier.

SObjectargs
The arguments passed to the method call. A null-pointecatds that the method was called
without arguments. largsis not a null-pointer, it is always of typex r ay.

Env env(default valuenul 1)
The environment object for the operation. This environnodrect should be passed to all
operations performed on the object. A null-pointer (vaiug |) indicates that the default
environment should be used.

If the method call succeeds, the method should return a sipfgect representing the return value
of the method call. If the method call failed, the method shtbuld return a null-pointer.

If a null-pointer is returned (error indication), tieeror flag of the corresponding environment
object is set. The method is responsible for propper erpontang (e.g. by calling theessage()
method from the environment object).

44

SObjectevalSObjectexpressioneEnv env = nul |)
This method implements the expression evaluation fundtiothe object class.
Parameters:

SObjectexpression
The expression object to be evaluated. This is always arcodfgypeexpr . The first
operand of the expression is the evaluated operand of thimatiexpressios?

Env env(default valuenul | ')
The environment object for the operation. This environnodaject should be passed to all
operations performed on the object. A null-pointer indésathat the default environment
should be used.

The method should return the evaluated object. If the espyagan not and should not be
evaluated, the method should return the paraneeressioras is.
If the method returnaul | , an evaluation is performed on all subexpressions.

Note: Theeval () method of the class environment is responsible for perflogmécursive
evaluation of subexpressidits

D.2.1 The Default Class Environment

A class environment object without a class name (i.e ntraefield isnul |) is called thedefault class
environmentlf a default class environment is present, it is used asldss @nvironment for all classes
without a matching class environment.

Note: For objects without an associated class name, the defask elnvironment is used when presentin
the environment object.

D.3 Runtime Objects

Runtime objects are represented by instances of the AR 8{@s ect . Instances of the runtime object
classSOhj ect are immutable. That means, that the value of a simple ob@arthanges after the

object is created. The API should be designed in a way thatistioe creation of unnecesseary temporary
objects.

D.3.1 Factories
Objects of all types may be created using the following statttory methods:

cl ass SObj ect

{
1.,
static final int EXPR PCS = 1;
static final int EXPR _NEG = 2;
static final int EXPR_NOT = 3;
static final int EXPR PLUS = 4;
static final int EXPR_MNUS = 5;
static final int EXPR_MJL = 6;
static final int EXPR DV = 7;
static final int EXPR MOD = 8;
static final int EXPR_CAT = 9;
static final int EXPR LS = 10;
static final int EXPR LE = 12;

21The simple objects library needs to evaluate the first opeasyway to dispatch the evaluation to the correct class@mvient.
22This enables theval () method to perform conditional evaluation of subexpression

45

static final int EXPR_GI = 14;

static final int EXPR_GE = 16;

static final int EXPR EQ = 18;

static final int EXPR_EQ APPROX = 19;
static final int EXPR_NE = 20;

static final int EXPR _NE APPROX = 21;
static final int EXPR_AND = 22;

static final int EXPR OR = 283;

static final int EXPR COND = 24;

static final int EXPR_SEQ = 25;

static final int EXPR _SEL = 26;

static final int EXPR INDEX = 27;

static final int EXPR CALL = 28;

11

static SCbhject N L(string cn = null);
static SCbject BOOL(bool value, string cn
static SCbject |INT(long value, string cn
static SCbject FLOAT(doubl e

static SObject STRING string

static SCbject STRING raw(string val ue,
static SCbject STRI NG ucx(byte[] val ue,
static SCbject BI NARY(SOhject id, byte[] body,
static SCbject ARRAY(SOhject

static SChject VREF(string r

static SObject VREF_raw(stri

static SCbject VREF ucx(byte

static SChject EXPR(int opTy

string cn = null);
11
b

staticSObjectNIL(string cn = nul |)

val ue, string cn
val ue, string cn

nul I');

nul I');

nul I');
string cn = null);
[T key, SObject[] val ue,
ef, string cn = null);

string cn = null);

ng ref, string cn = null);

[T ref, string cn
pe, SOhject opl,
SChj ect op2 = null, SObject op3 = null,

nul I');

Create a runtime object representingia object (a simple object of typai |).

Parameters:

string cn (default valuenul 1)

If not nul | , the parametesn specifies the class hame of the new object.

staticSObjectBOOL (bool valug string cn

Create a runtime object representing a simple object of iy .

Parameters:

bool value
The value.

string cn (default valuenul)

= null)

If not nul | , the parametezn specifies the class name of the new object.

staticSObjectINT(long valueg string cn =

Create a runtime object representing a simple object ofitypie

Parameters:

long value
The numeric value.

string cn (default valuenul |)

nul 1)

If not nul | , the parametezn specifies the class hame of the new object.

46

staticSObject FLOAT (double value string cn = nul |)
Create a runtime object representing a simple object offtypat .
Parameters:

double value
The numeric value.

string cn (default valuenul)
If not nul | , the parametern specifies the class name of the new object.

staticSObject STRING(string valug string cn = nul | ,Envenv = nul |)
Create a runtime object representing a simple object of $ype ng.
Parameters:

string value
The string value. The value is interpreted as a text seaitidim inst r i ng context.

string cn (default valuenul)
If not nul | , the parametern specifies the class name of the new object.

Env env(default valuenul | ')
The environment object. The special vatud | represents the default environment.

staticSObject STRING_rawétring value string cn = nul |)
Create a runtime object representing a simple object ofsypé ng.
Parameters:

string value
The string value. The value is interpreted as a UNICODE gtrin

string cn (default valuenul 1)
If not nul | , the parametezn specifies the class hame of the new object.

Note: String objects created with this factory can not containakde references.

staticSObject STRING_ucxbyte[] valug string cn = nul |)
Create a runtime object representing a simple object of $ype ng.
Parameters:

byte[] value
An extended string value. The value is interpreted as amdrtt UNICODE string as defined
in section 2.3 on page 7. If the specified string is not a valtdrded UNICODE string, it is
interpreted as a regular UNICODE string.

string cn (default valuenul 1)
If not nul | , the parametern specifies the class name of the new object.

staticSObject BINARY(SObjectid, byte[] body, string cn = nul |)
Create a runtime object representing a simple object ofé&ypeay. Parameters:

SObjectid
The type ID object of the binary object (tie:field of the simple objeatata).
byte[] body
Thebodyfield of the simple objealata The valuenul | is equivalent to an empty body.

string cn (default valuenul 1)
If not nul | , the parametern specifies the class name of the new object.

staticSObject ARRAY (SObiject[] key, SObject[] valug string cn = nul |)
Create a runtime object representing a simple object oféaypeay. The array object created will
be empty (i.e. not contain any array elements).
Parameters:

47

SObject[] key
The array of element keys. The special vatug | indicates that all keys anelL .

SObject[] value
The array of values. The special valuad | indicates that am empty array should be created.

string cn (default valuenul)
If not nul | , the parametezn specifies the class hame of the new object.

The length of the resulting array deperusdy on thevalueparameter. If thé&eyarray is shorter
than thevaluearray, the extra elements in thieluearray are associated withnaL key. If thekey
array is longer than thealuearray, the extra elements in tkeyarray are ignored.

staticSObject VREF(string ref, string cn = nul |')
Create a runtime object representing a simple object of wypedf .
Parameters:

string ref
The reference string of the variable reference. The spddfiéng is converted to UTF8 and
interpreted as a text serializationshr i ng context. The represented string is taken as the
reference string of the new object.

string cn (default valuenul)
If not nul | , the parametern specifies the class hame of the new object.

staticSObject VREF_rawétring ref, string cn = nul |)
Create a runtime object representing a simple object of vypef .
Parameters:

string ref
The reference string of the variable reference. The spddfigng is interpreted as a raw
UNICODE string (i.e. not containing nested variable refiees).

string cn (default valuenul)
If not nul | , the parametezn specifies the class name of the new object.

staticSObject VREF_ucxpyte[] ref, string cn = nul |')
Create a runtime object representing a simple object of wypedf .
Parameters:

byte[] ref
The reference string of the variable reference. The spddfitng is interpreted as an
extended UNICODE string as defined in section 2.3 on pagetfielépecified string is not a
valid extended UNICODE string, it is interpreted as a regUlICODE string.

string cn (default valuenul 1)
If not nul | , the parametezn specifies the class hame of the new object.

staticSObject EXPR({nt opType SObjectopl, SObjectop2 = nul | , SObjectop3 = nul |,
stringcn = nul |')
Create a runtime object representing a simple object of ey .
Parameters:

int opType
The expression type. The constants representing expnaggies are summarized in table 2.

SObjectopl
The first operand of the expression.

SObjectop2(default valuenul 1)
The second operand of the expression. If the expressiorrégpares only one operand, this
parametemustbenul | .

48

Constant Operands | Expression Type

EXPR_PCOS 1 Unary positive operator

EXPR_NEG 1 Unary negation operator

EXPR_NOT 1 Unary logical negation operator (NOT)
EXPR_PLUS 2 Binary plus operator

EXPR_M NUS 2 Binary minus operator

EXPR_MUL 2 Multiplication operator

EXPR DI V 2 Division operator

EXPR_MOD 2 Modulo operator

EXPR_CAT 2 Concatenation operator

EXPR_LS 2 Less-than comparison operator
EXPR_LE 2 Less-or-equal comparison operator
EXPR_GT 2 Greater-than comparison operator
EXPR_GE 2 Greater-or-equal comparison operator
EXPR_EQ 2 Equals comparison operator
EXPR_EQ APPROX | 3 Equals approximate comparison operator
EXPR_NE 2 Not-equal comparison operator
EXPR_NE_APPROX | 3 Not-equal approximate comparison operator
EXPR_AND 2 Logical AND operator

EXPR_OR 2 Logical OR operator

EXPR_COND 3 Conditional operator

EXPR_SEQ 2 Sequence operator

EXPR_SEL 2 Selection operator

EXPR_| NDEX 2 Index operator

EXPR_CALL 2 Call operator

Table 2: Expression Type Constants in CI&86bj ect

SObjectop3(default valuenul |)
The third operand of the expression. If the expression tgpaires only one or two operands,
this parametemustbenul | .

string cn (default valuenul |)
If not nul | , the parametern specifies the class nhame of the new object.

D.3.2 Object Modification

All so calledobject modificatiormethods are in fact factories, since instanceS@ijj ect are
immutable. E.g. removing an element from an array create&svesimple object representing a flat copy
of the original array with the specified element removed.

Note: The objects created by the object modification methods bpteserve the class name of the called
object.

The following object modification methods are provided by 8thj ect class:

cl ass SObj ect

{
11

SCbj ect set_cl assname(string cn);

49

SCbj ect insert(int position, SObject key, Shject value);
SChj ect insert(int position, SObject[] key, SObject[] value);
SCbj ect append(SCbj ect key, SObject val ue);

SChj ect append(SOhj ect[] key, Shject[] val ue);

SCbj ect renove(int position, int count = 1);

SCbj ect renpve(SCbj ect key);

SChj ect replace(int position, SOhject key, SObject val ue);
SCbj ect put (SObj ect key, SObject value, Env env = null);

SCbj ect concat (SObj ect oper and);

SCbj ect set(string address, SObject val ue,
bool slice = false, Env env = null);
SChj ect set (SObj ect address, SObject val ue,
bool slice = false, Env env = null);

SCbj ect string_insert(int position, string str);
SCbj ect string_append(string str);
SCbj ect string_replace(int position, int length, string str);
11
b

SObjectset_classnamsifing cn)
Change the class name of an object. Parameters:

string cn
The class name of the new object. If thisiigl | , no class name will be associated with the
new object.

An object identical to the called object except for the cla@sie. The class name is substituted with
the specified class nance.

SObjectinsert{nt position SObjectkey, SObjectvalug
Insert an element (i.e. key/value pair) into an array objidés$ a fatal runtime error if the called
object is not of typer r ay.
Parameters:

int position
The index position for inserting the element. Negative galare counted from the end if the
array. Ifindexis equal to the length of the array, the element is appendgzbtarray. It is a
fatal runtime error if the index is out of bounds.

SObjectkey
The key of the key/value pair. The valoel | is equivalent to aviL object.

SObjectvalue
The value of the key/value pair. The valnel | is equivalentto aliL object.

The method returns an array object with the specified elemsetted.

SObjectinsert{nt position SObject[] key, SObject[] value
Insert a sequence of elements (key/value pairs) into agy abject. It is a fatal runtime error if the
called object is not of typar r ay.
Parameters:

int position
The index position for inserting the sequence of elemehfsoditionis equal to the length of
the array, the elements are appended to the array. It isladatame error if the index is out of
bounds.

50

SObject[] key
Array of element keys. The special valoel | indicates that all element keys ave. .

SObject[] value
Array of values. The length of the arraglueindicates the number of elements being
inserted. If thevaluearray is longer than thieeyarray, the unspecified keys are senta. If
thevaluearray is shorter than thHeeyarray, the extra key values keyare ignored.

If the specified element sequence is empty, the called otgewins unchanged. The method
returns an array object with the specified elements inserted

SObjectappend§Objectkey, SObjectvalug
Append an element (i.e. key/value pair) to an array objeds.d fatal runtime error if the called
objectis not of typar r ay.
Parameters:

SObjectkey
The key of the key/value pair. The valoel | is equivalentto aviL object.

SObjectvalue
The value of the key/value pair. The valnel | is equivalentto aiiL object.

The method returns an array object with the specified eleaygmended.

SObjectappend§Object[] key, SObject[] valug
Append a sequence of elements (key/value pairs) to an abjagtolt is a fatal runtime error if the
called object is not of typar r ay.
Parameters:

SObject[] key
Array of element keys. The special valngl | indicates that all element keys ave .

SObject[] value
Array of values. The length of the arraglueindicates the number of elements being
appended. If thgaluearray is longer than thikeeyarray, the unspecified keys are setita. If
thevaluearray is shorter than theeyarray, the extra key values keyare ignored.

If the specified element sequence is empty, the called otgewins unchanged. The method
returns an array object with the specified elements appended

SObjectremoveint position int count = 1)
Remove a number of elements from an array object. It is afataime error if the called object is
not of typear r ay.
Parameters:

int position
The inserted position of the first element being removed atieg values are counted from the
end of the array. Itis a fatal runtime error if the index is otibounds.

int count(default valuel)
The number of elements being removed. This value must b&vmosr zero. Ifcountis zero,
the array object remains unchanged.

The method returns an array object with the specified eleswwentoved.

SObjectremoveSObjectkey, Envenv = nul |)
Remove the last element whose key matches the spekdigett is a fatal runtime error if the
specified object is not of typar r ay.
Parameters:

51

SObjectkey
The specified element key.
Env env(default valuenul 1)

The environment object used for resolving variable refeesrin the element keys of type
string. Ifthisisnul | , the default environmentis used.

The array object remains unchanged if the specified key ifonoid. The method returns an array
object with the specified element removed.

Note: Only the last element with a matching key is removed. Theyamight contain multiple
elements with a matching key.

SObjectreplaceint position SObjectkey, SObjectvalue
Replace an element in an array object. It is a fatal erromfadlled object is not of typar r ay.
Parameters:
int position
The index position of the element being replaced. Negatitees are counted from the end of
the array. It is a fatal runtime error if the index is out of bds.
SObjectkey

The replacement key of the specified element. The speciaéwall | indicates that the key
should remain unchanged.

SObjectvalue

The replacement value of the specified element. The spatdiaénul | indicates that the
value should remain unchanged.

The method returns an array object with the specified eleaitared.
Note: The special valuaul | doesnotrepresent aliL value.

SObject put(SObjectkey, SObjectvalue Env env = nul |)

Alter or add an element in/to an array object. It is a fatabeifrthe called object is not of type
array.

Parameters:

SObjectkey

The key of the array element that should be altered. The lastent in the array with a

matching key is altered. If the specified key is not found mdnray, the specified key/value
pair is appended to the array.

SObjectvalue
The value of the specified element. The special valulel indicates aniL value.
Env env(default valuenul 1)

The environment object used for resolving variable refeesrin the address and in element
keys of typest ri ng. If thisisnul | , the default environment is used.

The method returns an array object with the specified eleaitared or added.

SObjectconcatEObjectoperand

Append an array object to an array object or a string objeatdring object. It is a fatal runtime
error if the called object is not if typar r ay or typest ri ng.
Parameters:

SObjectoperand

The array object being appended. It is a fatal runtime efithiei parameteoperandis not of
the same type as the called object (eitaer ay orstri ng).

The method returns the concatenation of the called objettranoperand.

52

Theset () methods below replace a subobject of a specified simple blvjgtanother object. The
position of the subobject is specified as an address (saerséabn page 23 for a description of
addresses). The address with the last operation stripmadiésl thepathand the last operation is called
theselection

The path is resolved usimure address resolutiofsee section 5.2). Cases where pla¢ghcan not be
resolved are handled using the following set of rules:

1. If anindex or selection operation is applied tuia object, that object is transparently replaced by
an empty array object.

2. If a selection operation references an undefined keyk#yais appended to the array and associated
with the valueNiL .

3. Aslice operation selecting an empty slice from an arraysea the key/value painL /NIL to be
inserted at the position of tHewer boundof the slice. If thdower bounds equal to the length of
the array, theNiL/NIL element is appended to the array. The selected object is the
inserted/appended element.

If path can’t be resolved directly or by using the rules ahtiveset () methods below will returmul | .

The selection is used to identity the subobject that shoalldeplaced. For this operation, array indices
and slices are handled in a special way: If sfieeflag (passed to all variants of teet () method) is
clear, the selected element or slice is replaced by a sitgjeemt consiting of the keyiL and the
specified value. If theliceflag is set, the selected element or slice is replaced by a&gegquof elements
specified as an object of tye r ay. In this case the specighluenul | is interpreted as an empty array
(causing the selected element or slice to be removed).

If an array object is created transparently in the processldfess resolution, these objects wibt be
associated with a class name.

SObjectsetktring addressSObjectvalug bool slice = fal se,Envenv = nul |)
Substitute a subobject at the specified address.

string address
The parametestring is encoded as an UTF-8 byte array and interpreted as a téalizaion
of a simple object. If the first non-whitespace charactestiimgis a dot () or an opening
bracket [), the string' NI L" (without the quotes) is prepended to the parameter. The
represented simple object is interpreted as an addressisgléthe object to be substituted.

SObjectvalue
The value to be substituted in place of the selected subbbjec

bool slice (default valud al se)
Flag indicating if an element or slice addressed by an indei@e selection should be
replaced by a single value or a sequence of elements (see)abov

Env env(default valuenul 1)
The environment object used for resolving variable refeesrin the address and in element
keys of typest r i ng. The special valuaul | causes the default environment to be used.

If the address can't be resolved, the function returak| . On succeeds, an object with the
specified subobject replaced is returned.

SObjectsetSObjectaddressSObjectvalue bool slice = fal se,Envenv = nul |)
Substitute a subobject at the specified address.

SObjectaddress
The address selecting the simple object to be substituted.

53

SObjectvalue
The value to be substituted in place of the selected subbbjec

bool slice (default valud al se)
Flag indicating if an element or slice addressed by an indelice selection should be
replaced by a single value or a sequence of elements (see)abov

Env env(default valuenul 1)
The environment object used for resolving variable refeesrin the address and in element
keys of typest r i ng. The special valuaul | causes the default environment to be used.

If the address can't be resolved, the function retumak| . On succeeds, an object with the
specified subobject replaced is returned.

The following string manipulation methods operate on sarghjects of typet r i ng. The language
typestring should be a string type capable of storing UNICODE stringheWéver a position with in
string is specified throughositionparameter, the parameter indicates the index position MECODE
character. Note that some characters may be representestyiance of UNICODE characters (e.g.
accented characters), so the indicated position depenldsvesuch characters are represented. See
section 5.4 on page 27 for details about string normaliratio

String objects represented as simple object instancesxtgaded UNICODE stringsee section 2.3 on

page 7). An extended strings may contain variable refegeridee string manipulation methods below
treat variable references like a single UNICODE character.

SObjectstring_insertifit position string str)

Insert a string into a string object. It is a fatal runtimeoeiif the called object is not of type
string.
Parameters:

int position
The character position for inserting the specified strifithe position is- 1 or points beyond
the end of the string, the specified stristgis appended to the called object. It is a fatal
runtime error to pass a negative value smaller than

string str
The string to be inserted.

The method returns a string object with the specified strisgiited at the specified position.

SObjectstring_appendtring str)
Append a string to the end of a string object. It is a fatalimaterror if the specified object is not
of typest ri ng.
Parameters:

string str
The string to be appended.

The method returns a string object with the specified strpjeaded.

SObjectstring_replacaft position int length string str)
Replace a substring of the specified string object. It isal faintime error of the specified object is
not of typest ri ng.
Parameters:

int position
The character position for replacing the specified striiithd position is- 1 or points beyond
the end of the string, the specified stristgis appended to the called object.

54

int length
The length of the substring to be replaced. lemgth== 0 this is equivalent to the
string_i nsert () method. Iflengthis larger than the rest of the string-ot, the entire
rest of the string is replaced. It is a fatal runtime erroragga negative value smaller thah.

string str
The replacement string.

The method returns a string object with the specified sutgstaplaced.

D.3.3 Subobject Access

Subobjects of a simple object may be accessed as instantesaéssSObj ect . The following
subobject access methods are defined foSHlg ect class:

cl ass SObj ect

{
...
Soj ect index(int index);
SCbj ect slice(int start, int end);
SChj ect sel ect (SObj ect key, Env env nul I');
SChj ect | ookup(SOhj ect key, Env env nul I');
SCbj ect cal | (SObj ect args, Env env = null);

i nt i ndex_of (SObj ect key, Env env = null);

SCbj ect get(string address, bool pure = false, Env env = null);
SChj ect get (SObj ect address, bool pure = false, Env env = null);

string substring(int position, int length, Env env = null);
11

}s

SObjectindex(nt indey
Perform arindex operatioras described in section 5.1.1, page 23. The called objet¢bhmsa
valid sequencebject for the operation. For an index operation, this isairer r ay, st ri ng,
expr . If the called object is not a valid sequence, a classlesxipgpression is created where the
first operand is the called object and the second operanéh@e# array) holds a single integer
object (type nt) representing the value of the parametelex

int index
Theindexin the index operation.

The method returns the result of the index operation.

SObjectslice(nt start, int end
Perform aslice operatioras described in section 5.1.1, page 23. The called objedbtisesa valid
sequencebject for the operation. For a slice operation, this isezitly r ay orst ri ng. If the
called object is not a valid sequence, a classless indexession is created where the first operand
is the called object and the second operand (the index ancdg3 two integer objects (typent)
representing the value of the paramettest andend

int start
The (inclusive)ower boundof the slice operation.

int end
The (exclusiveupper bounaf the slice operation.

23The result of the index operation will beL if the index is out of bounds.

55

The method returns the result of the slice operation.

SObjectselectEObjectkey, Env env = nul |)
Perform aselection operatioas described in section 5.1.1, page 23. The called objdutis t
dictionaryof the operation and has to be of typer ay. If the dictionary is not of typar r ay or
the dictionary does not contain the specified key, the ob@uatned is a (classless) selection
expression where the first operand is the called object andetbond operand is the selector.

SObjectkey
Theselectorof the selection operation.

Env env(default valuenul | ')
The environment object used for comparison of the keys wighspecified selector. The
special valuenul | represents the default environment.

The method returns the result of the selection operation.

SObjectlookup(SObjectkey, Envenv = nul |)
Perform a dictionary lookup operation. Itis a fatal runtiereor of the called object is not of type
array.

SObjectkey
The key of the desired element.

Env env(default valuenul 1)
The environment object used for comparison of the keys wighspecified selector. The
special valueul | represents the default environment.

The method returns the value bound to the specified keybt if the specified key is not bound.

SObjectcall(SObjectargs Env env = nul |)
Perform a method call operation on the called object. Thedalbject should be a selection
expression. The selector of that expression (the secoraioghes interpreted as a method selector.
If a class environment object (see section D.2 on page 43kiscéated with the first operand of the
called expression object, tloal | method of the class environment is called.

Note: It is a fatal runtime error if the parametargsis not of typear r ay.

SObjectargs
The arguments operand of the call. This is an object of sypeay holding the call
arguments (positional or named or both). It is a fatal rusterror if the value oérgsis not of
typearray.

Env env(default valuenul 1)
The environment object passed thetd | method of the class environment. The special
valuenul | represents the default environment.

If the call operation is handled by tloal | method of a class environment, the return value of that
call is passed on to the caller. If no class environment is@ated with the called object or the
called’ object is not a selection expression, the returnevé a call expression object where the first
operand is the called object an the second operand is the ehtheargs parameter.

int index_ofSObjectkey Envenv = nul |)
Return the index of the element associated with the spedifigdit is a fatal runtime error if the
called object is not of typar r ay.

SObjectkey
The key to look for.

Env env(default valuenul 1)
The environment object used for comparing the keys. Thesvalli | represents the default
environment.

56

The method returns the index of ttast element in the array matching the specified key biif the
specified key was not found.

The followingget () methods use addresses to select a subobject from a simpl.obfldresses and
the address resolution process is defined in section 5 (@gd Reget () methods offer an optional

pureflag indicatingpure address resolutiorPure addresses and the pure address resolution process are
defined in section 5.2 (page 26).

If the address objects passed to tfet () methods contains method calls and if fheeflag is clear, the
method call subexpressions are substituted usingathé method of the called object.

SObjectget(string addressbool pure = fal se,Envenv = nul |)
Get a subobject of the called object.

string address
The address of the subobject. The straugiresss converted to UTF-8 and interpreted as a
text serialization of a binary object (see section 3.1)héf irst non-whitespace character of
addresss a dot () or opening brackef), the string NI L” is prepended to the address.
bool pure (default valuef al se)
Flag indicating that pure address resolution should be.used

Env env(default valuenul 1)
The environment object used. The valud | represents the default environment.

The method returns the specified subobject. The functiammrenul | if the pureflag was selected
an the address does not resolve to a subobject of the caljectob

SObjectgetSObjectaddressbool pure = fal se, Envenv = nul |)
Get a subobject of the called object.

SObjectaddress
The address of the subobject.

bool pure (default valuef al se)
Flag indicating that pure address resolution should be.used

Env env(default valuenul 1)
The environment object used. The valud | represents the default environment.

The method returns the specified subobject. The functiammenul | if the pureflag was selected
an the address does not resolve to a subobject of the caljectob

The following string selection methods operate on simpjeab of typest r i ng. The language type
string should be a string type capable of storing UNICODE stringheWéver a position with in string is
specified through positionparameter, the parameter indicates the index position di&CODE
character. Note that some characters may be representeztioyiance of UNICODE characters (e.g.
accented characters), so the indicated position depenldswesuch characters are represented. See
section 5.4 on page 27 for details about string normaliratio

string substringint position int length Envenv = nul |)
Get a substring from the called object. The called objecthé® of typest ri ng. Itis a fatal
runtime error if the called object in not of tys r i ng.

int position
The position of the first character of the substring. Negatalues are counted from the end

of the string (e.g. the valuel selects the last character of the string. It is a fatal ruatirror
if the position is out of bounds.

57

int length
The length of the selected substring (number of UNICODE attars). If the value is1 or

larger that the number of UNICODE characters following tpecified position, the entire rest

of the string is selected. Values smaller thdncause a fatal runtime error.

Env env(default valuenul 1)
The environment object used for resolving variable refeesrin the string. The valuaul |
represents the default environment.

The method returns the selected substring.

D.3.4

Object Evaluation

cl ass SObj ect

{

11
stati
stati
stati
stati
stati
stati
stati
stati
stati
...
int type(void);

string classnanme(void);
bool to_bool (void);

int to_int(void);

doubl e to_doubl e(voi d);
string to_string(void);

final
final

int TYPE.NL = 0;
int TYPE BOOL = 1;
final int TYPE INT = 2;
final int TYPE_FLOAT = 3;
final int TYPE STRING = 4;
final int TYPE BI NARY = 5;
final int TYPE_ARRAY = 6;
final int TYPE EXPR
final int TYPE VREF

O0O0O00000O0 -

7,
8;

string str(Env env = null);

SCbj ect binary_type_id(void);
byte[] binary_data(void);

int array_count (void);

SCbj ect[] array_val ues(void);
SCbj ect[] array_keys(void);
string vref_ref(void);

int expr_type(void);

SCbj ect[] expr_op(void);

SCbj ect eval (Env env = null);

SCbj ect resol ve(bool recursive = true, Env env = null);
i nt conpare(SObj ect operand, Env env = null);

I

}s

int type(void)
Return the object type. This is one of the constaiBE_NI L (NIL object, typeni |),
TYPE_BOOL (typebool), TYPE_ | NT (typei nt), TYPE_FLQAT (typef | oat),
TYPE_STRI NG(typest ri ng), TYPE_BI NARY (typebi nary), TYPE_ARRAY (typear r ay),
TYPE_EXPR (typeexpr), TYPE_VREF (typevr ef).

string classname(void)
Return the class name. If the object is not associated witheatiul | is returned.

58

The following set of methods converts simple object to reatiglues of the programming environment.
All method names are of the forbo_typenamewheretypenamés the name of a native type. As a
consequence, the method names of these conversion fundépend on the programming environment.
Itis possible to have multiple conversion methods for theesgaimple object type, e.g. in C there might
be conversion methods named_i nt ,t o_I ong, andt o_I ong_I ong.

The methods will perform implicit type conversion using théowing rules:

1.

Objects of typeni | are converted to typool , valueFALSE, the integer or floating point value O
(i nt orfl oat), orto an empty string (typet ri ng).

. Objects of typdoool are converted to typent , f | oat , or to typest ri ng. FALSE mapsto 0

(int orfl oat)or“fal se”(string), TRUE mapsto 1lint orfl oat)or“true”(string).

. Objects of typé nt are converted to typel oat ortypest ri ng. If the object is converted to

typef | oat , the numerical value is retained as accurately as possilthee object is converted to
st ri ng, the shortest decimal representation using ASCII digiteiserated.

. Objects of typar r ay are converted to typgt r i ng by converting the values of all array

elements to typst r i ng and concatenating these string objects. No separatorssegad
between the array elements. The element keys are ignored.

. All objects not convertable to typs r i ng using one of the rules above are converted to type

st ri ng by putting the type name in angle brackets (k@nd>). E.g. an object of typer ef is
converted to the string<vr ef >,

If a type conversion is not possible, a fatal runtime errayeserated.

boolto_boolpool &error)

Return the boolean value of the object. If the object is naypébool , it is converted to type
bool using the ruleset above. If the object can not be convertggptbool , FALSE is returned
and a conversion error is indicated.

bool &error
In case of a conversion err@rror is set toTRUE.

int to_int(bool &error)

Return the integer value of the object. If the objectis ndypki nt , it is converted to typé nt
using the ruleset above. If the object can not be convertggpta nt , 0 is returned and a
conversion error is indicated. If the resulting intger watan not be converted to the natiue type
(overflow), an error is indicated and the minimum/maximupresentatable value is returned (e.g.
in C these will bd NT_M Nandl NT_MAX).

bool &error
In case of a conversion err@rror is set toTRUE.

doubleto_doublebool &error)

Return the floating point value of the object. If the objeatds of typef | oat , itis converted to
typef | oat using the ruleset above. If the object can not be convertggex | oat , 0. 0 is
returned and a conversion error is indicated. If the rasgflioating point value is too large for the
nativedouble type, infinity (or negative infinity, if appropriate and aladile) is returnedvithouta
conversion error indication.

bool &error
In case of a conversion err@rror is set toTRUE.

59

string to_string()
Return the string value of the object. If the object is notypiest r i ng, it is converted to type
st ri ng using the ruleset above. Variable references embedded stiing value areotresolved.

Note: Rule 5 in the ruleset above makes sure #dibbbjects can be converteds$d ri ng.

string strEnvenv = nul |)
Return the string representation of the simple object. Thiegsrepresentation is created using the
st r () method from the environment object. If teér () method returnaul | , the
to_string() method is used to create the string representation.

Env env(default valuenul 1)
The environment object. The special vatud | represents the default environment.

The following methods can be used to examine simple objaathn’t be mapped to a simple base type.
No type conversion is done. If an object is not of the expettpd, a fatal runtime error is generated.

SObjectbinary_type_id(void)
Return the type ID object of a binary object (i.e. ftdield of thedatafield, see section 2.1). Itis a
fatal runtime error if the called object is not of typenar y.

byte[] binary_data(void)
Return the data held by thmdyof a binary object. It is a fatal runtime error if the callededi is
not of typebi nary.

int array_count(void)
Return the number of elements stored in an array objectalfasal runtime error if the called
object is not of typear r ay.

SObject[] array_values(void)
Return an array holding the values stored in an array objesta fatal runtime error if the called
object is not of typear r ay.

SObject[] array_keys(void)
Return an array holding the keys stored in an array objeid.dffatal runtime error if the called
objectis not of typar r ay.

string vref_ref(void)
Return the reference string of a variable reference as améatd UNICODE string as defined in
section 2.34 It is a fatal runtime error if the called object is not of typeef .

int expr_type(void)
Return the operator type of an expression object. This isobitee constants listed in table 2 on
page 49. Itis a fatal runtime error if the called object is oftypeexpr .

SObject[] expr_op(void)
Return an array of expression operands. It is a fatal rungéima if the called object is not of type
expr.

SObjectevalEnv env = nul |)
Perform an object evaluation. The semantics of an evaluat@ration depends on the object type:

string
If the string object contains variable references, thes@abbe references are resolved.

24an extended UNICODE string can be resolved by creatirgg ai ng object withSObj ect : : STRI NG_ucx() and calling
SOhj ect: :resol ve().

60

vr ef
The variable reference is resolved. If the resulting ohigof typest r i ng or
expr essi on, theeval () method is called again on the result.

expr
If a class environment is associated with the first operanbeéxpression, theval ()
method of that environment is called to perform the evatuagsee section D.2). If the
expression object itself is associated with a class hamecthss name is applied to the
resulting object®

all other types
The called object is returned.

Note that theeval () method calles itself recursively only if an object of tyypeef resolves to an
object of typest ri ng orexpr . As a consequence, at most one recursion is performed.
Parameters:

Env env(default valuenul 1)
The environment used for evaluation. The vatug | represents the default environment.

The method returns the result of the evaluationwok | if the evaluation failed.

SObjectresolveboolrecursive = true, Envenv = nul |)
Resolve variable references. The method may operate eglyrsn all contained objects. An
object of typest r i ng is replaced by a string with all variable references reshlv¥a object of
typevr ef is resolved. All other objects are kept unchanged.

bool recursive(default valug r ue)
Flag indicating if the method should operate recursivdlihik flag is set, the method operates
on all objects contained in the called object. If the flag &ac) the method operates only on
the called object itself.

Env env(default valuenul 1)
The environment used for variable resolution. If thigid | , the environment of the called
object is used.

The method returns the resolved object. If no resolutionpeaformed, the returned object is the
called object itself. The caller may compare the called cttifethe object returned to find out if a
variable resolution was done.

Note: The resolution of variable references may yield more végiadferences. If this is the case,
the variable references returned by a variable lookumatessolved.

int comparefObjectoperand Env env = nul |)
Perform an ordered comparison of the called object with pleei§ied objecbperand Variable
references in strings are resolved before the objects anpaed. Objects of typer ef arenot
resolved.
Parameters:

SObjectoperand
The operand compared with the called object.
Env env(default valuenul 1)
The environment object. The special vatud | represents the default environment.
Note: This comparison method implies a total order on simple dhjelues. This order depends on
the variable resolution methad ef () orvref _str () of the environment object.
The method returns:

25Applying a class name to an expression object can be interpes a cast operation.

61

- 1 if the called object is smaller than the operand,
0 if the called object is equal to the operand (after resolvimgable references in strings),
1 if the called object is greater than the operand.

D.3.5 Serialization and Deserialization

cl ass SObj ect

{
1.,
static final int CTX GENERAL = 1;
static final int CTX_SELECTION = 2;
static final int CTX ARRAY = 3;
static final int CTX_EXPRESSI ON = 4;
static final int CTX_STRING = 5;
static final int SER Bl NARY = 1;
static final int SER TEXT = 2;
static final int SER TEXT _COWPACT = 3;
static final int SER TEXT_PRETTY = 4;
/1

static SCbject unpack(byte[] ser,
int context = SObject. CTX_GENERAL,
Env env = null, bool envall = false);

static SCbject unpack(string ser,
int context = SObject. CTX_GENERAL,

Env env = null, bool envall = false);
byte[] pack(int node = SObject.SER TEXT);
1.,

s

Serialization and deserialization is performed by the dhjeethodpack() (serialization) and
unpack() (deserialization). The serialization contexts are regméd by theCTX_ constants:

CTX_GENERAL
gener al context.

CTX_SELECTI ON
sel ect i on context.

CTX_ARRAY
array context.

CTX_EXPRESSI ON
expr essi on context.

CTX_STRI NG
st ri ng context.

The deserialization methodiipack()) accepts both serialization forms, binary and text sezadilbn.
The binary serialization is recogized if the specified cehienotCTX_STRI NGand the high bit of the
first byte of the serialization is set.

When the deserialization is done, the specified environwoigjett (parametezny) is bound to all object
instances created that are not of typd , bool ,i nt, f | oat . The flagenvallforces the specified
environment to be attachedadl objects.

The serialization methopack () can be used to create the following serialization variants:

62

SER_BI NARY
A binary serialization is created.

SER _TEXT
A standard text serialization is created. The serialiratiil contain whitespace characters for
better readability.

SER_TEXT_COWPACT
A compact text serialization is created. The serializatuilhbe as dense as possible.

SER_TEXT_PRETTY
A pretty printed text serialization is created. The sezetion will contain a consiterable amount of
whitespace.

Note that the text serialization variaf8&R_TEXT, SER_TEXT_COMPACT, andSER_TEXT_PRETTY
may produce the same output for some implementations.

staticSObjectunpack(yte[] ser, int context = SObj ect . CTX_GENERAL,Envenv = nul |)
Deserialize a simple object. The serialized represemtatiay be text or binary (resolved
automatically). After deserialization, thenpack () method from the appropriate class
environment is called.

byte[] ser
The serialization of the simple object.

int context(default valueSCbj ect . CTX_GENERAL)
The serialization context (see section 3.1.1 on page 18gri§ a binary serialization, the
contextparameter is ignored.

Env env(default valuenul | ')
The environment object. The special vatud | represents the default environment.

On success, the deserialized object instance is returmedr@r,nul | is returned and the error
indicatior of the environment objeetvis set.

staticSObjectunpack(string ser, int context = SCbj ect . CTX_GENERAL, Envenv = nul |)
Deserialize a simple object. This is a variant of tirgpack () method above, acceping a string
holding the serialization. The string is converted to UTBeore deserialization.

int context(default valuesCbj ect . CTX_GENERAL)
The serialization context (see section 3.1.1 on page 18gri§ a binary serialization, the
contextparameter is ignored.

string ser
The serialization of the simple object, represented asigast r i ng. This string is
converted to UTF-8 before deserialization.

Env env(default valuenul 1)
The environment object. The special valud | represents the default environment.

On success, the deserialized object instance is returnedrror,nul | is returned and the error
indicatior of the environment objeetvis set.

byte[] packfnt mode = SCbj ect . SER TEXT,Envenv = nul |)
Create a serialization from a simple object instance. Rederialization, theack() method of
the class environment is called.

int mode(default valueSObj ect . SER_TEXT)
This parameter specifies the serialization variant. ThimsofSER Bl NARY, SER_TEXT,
SER_TEXT_COWPACT, SER_TEXT_PRETTY. SpecifySER_BI NARY for a binary
serialization andbER_TEXT for a default text serialization.

63

Env env(default valuenul | ')
The environment object. The valnell | represents the default environment.

The method returns a natibg't e-array holding the serialization of the called object.

D.3.6 The Default Environment

The default environment can be obtained and defined usinfplbeing static methods from thEnv
class:

cl ass Env

{
11

static Env get_defaul t(void);
static void set_default(Env env);
11

staticEnv get_default(void)
Return the current default environment. The method retimagnvironment itself, not a clone.

staticvoid set_defaultEnv eny)
Set the default environment.

Env env
The new default environment object.

D.4 The Standard Environment

A programming library may support the standard expressomestics described in appendix B
(Expression Semantics) and/or the standard object cldssesibed in appendix C (Standard Object
Classes). If these standard expression semantics arerseghgbey should be available through a factory
method of the environment class.

cl ass Env

{
1.,
static Env STANDARD(voi d);
11

b

staticEnv STANDARD(void)
Return an instance of the standard environment. Note thevdnstance is returned for every call
to the method, so the caller may modify the environment.

For object-oriented programming environments, the staheavironment should be an instance of a class
derived from the clasBnv calledSt dEnv:

cl ass StdEnv extends Env

{
11

}s

64

D.5 Message Identifiers

An error condition encountered by a simple objects impldiat#on is communicated to the application
using message identifiers. A message identifiers is a sequéASCII alphanumerics and underscores.
Every message identifier is associated with a set of namethlqrarameters.

An application willing to handle error message identifiggsi¢ally declares a class derived from the
standard environment claSs dEnv implementing theEnv: : message() method?®

XXX a list of message identifiers and parameters goes heseldhse separate subsubsections so the
message identifiers appear in the TOC.

26An application written in C or another non-object-orientedguage would could a standard environment instancetljirec

65

